TY - GEN
T1 - New methods for secondary flow phenomena visualization and analysis
AU - Straccia, Mattia
AU - Hofmann, Rodolfo
AU - Gümmer, Volker
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - This work focuses on presenting new techniques for the visualization of Secondary Flow Phenomena (SFP) in transonic turbomachinery. Here, Rotor 37 has been used to develop and apply these techniques in order to study vortices, shocks and secondary flows. They are also used to provide a comparison between turbulence models in Ansys CFX environment, here the Spalart-Allmaras (SA) and Shear Stress Tensor (SST) turbulence models. The scope of this paper is to give an improved understanding of SFP and how their onset and evolution are influenced from the turbulence model. The analysis is based on results of three-dimensional steady-state RANS simulations, for operating points between design point and near-stall condition, achieved by varying the outlet static pressure radial equilibrium distribution at the rotor exit. The new visualization techniques highlight important flow field features less investigated in previous research works, in particular secondary weak strength vortices. They will give a better visualization of and insight to the interaction of the passage shock and the tip leakage vortex, the interaction between vortices and boundary layers and the interaction of the shock wave and endwall boundary layers.
AB - This work focuses on presenting new techniques for the visualization of Secondary Flow Phenomena (SFP) in transonic turbomachinery. Here, Rotor 37 has been used to develop and apply these techniques in order to study vortices, shocks and secondary flows. They are also used to provide a comparison between turbulence models in Ansys CFX environment, here the Spalart-Allmaras (SA) and Shear Stress Tensor (SST) turbulence models. The scope of this paper is to give an improved understanding of SFP and how their onset and evolution are influenced from the turbulence model. The analysis is based on results of three-dimensional steady-state RANS simulations, for operating points between design point and near-stall condition, achieved by varying the outlet static pressure radial equilibrium distribution at the rotor exit. The new visualization techniques highlight important flow field features less investigated in previous research works, in particular secondary weak strength vortices. They will give a better visualization of and insight to the interaction of the passage shock and the tip leakage vortex, the interaction between vortices and boundary layers and the interaction of the shock wave and endwall boundary layers.
UR - http://www.scopus.com/inward/record.url?scp=85075356998&partnerID=8YFLogxK
U2 - 10.1115/GT2019-91378
DO - 10.1115/GT2019-91378
M3 - Conference contribution
AN - SCOPUS:85075356998
T3 - Proceedings of the ASME Turbo Expo
BT - Turbomachinery
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -