Abstract
Exposing uranium-molybdenum alloys (UMo) retained in the γ phase to elevated temperatures leads to transformation reactions during which the γ-UMo phase decomposes into the thermal equilibrium phases, i.e. U2Mo and α-U. Since α-U is not suitable for a nuclear fuel exposed to high burn-up, it is necessary to retain the γ-UMo phase during the production process of the fuel elements for modern high-performance research reactors. The present work deals with the isothermal transformation kinetics in U-8 wt%Mo alloys for temperatures between 673 and 798 K and annealing durations of up to 48 h. Annealed samples were examined at room temperature using either X-ray or neutron diffraction to determine the phase composition after thermal treatment, and in situ annealing studies disclosed the onset of phase decomposition. While for temperatures of 698 and 673 K the start of decomposition is delayed, for higher temperatures the first signs of transformation are already observable within 3 h of annealing. The typical C-shaped curves in a time-temperature- transformation (TTT) diagram for both the start and the end of phase decomposition could be determined in the observed temperature regime. Therefore, a revised TTT diagram for U-8 wt%Mo between 673 and 798 K and annealing durations of up to 48 h is proposed.
Original language | English |
---|---|
Pages (from-to) | 923-933 |
Number of pages | 11 |
Journal | Journal of Applied Crystallography |
Volume | 49 |
DOIs | |
State | Published - 2016 |
Keywords
- Isothermal transformation kinetics
- Neutron diffraction
- Nuclear fuels
- Uranium
- Uranium-molybdenum alloys
- X-ray diffraction