TY - JOUR
T1 - Neurokinin-1 receptor expression and its potential effects on tumor growth in human pancreatic cancer
AU - Friess, Helmut
AU - Zhu, Zhaowen
AU - Liard, Veronique
AU - Shi, Xin
AU - Shrikhande, Shailesh V.
AU - Wang, Li
AU - Lieb, Klaus
AU - Korc, Murray
AU - Palma, Carla
AU - Zimmermann, Arthur
AU - Reubi, Jean Claude
AU - Büchler, Markus W.
PY - 2003/5/1
Y1 - 2003/5/1
N2 - The neurokinin-1 receptor (NK-1R) and its ligand substance P (SP) are involved in the pathogenesis of certain neural tumors. Because nerves are significantly altered in pancreatic cancer, evidence for alteration of this pathway in human pancreatic cancer was sought. Expression of NK-1R was analyzed by real-time quantitative RT-PCR, in situ hybridization, immunohistochemistry, and Western blot analysis in normal human pancreatic and pancreatic cancer tissue samples and in pancreatic cancer cell lines. Furthermore, the influence of SP analogs and of the NK-1R antagonist MEN 11467 on pancreatic cancer cell growth was analyzed by sulforhodamine B (SRB) assay. By real-time quantitative RT-PCR, NK-1R mRNA was increased 36.7-fold (p < 0.001) in human pancreatic cancer samples compared with normal controls. Enhanced NK-1R expression levels were not related to tumor grade but were associated with advanced tumor stage and poorer prognosis. By in situ hybridization and immunohistochemistry, NK-1R mRNA and immunoreactivity were only occasionally weakly present in acinar and ductal cells in the normal pancreas. In contrast, moderate to strong NK-1R mRNA signals and immunoreactivity were present in most cancer cells. By Western blot analysis, NK-1R was increased 26-fold (p < 0.01) in pancreatic cancer samples in comparison to normal controls. NK-1R mRNA was detected in five pancreatic cancer cell lines by real-time quantitative RT-PCR, with the highest levels in CAPAN-1 cells and the lowest in ASPC-1 cells. SP analogs stimulated pancreatic cancer cell growth, depending on the NK-1R expression level, and this effect could be blocked by a selective NK-1R antagonist. These findings illustrate that the NK-1R pathway is activated in human pancreatic cancer and has the potential to contribute to cancer cell growth, thus suggesting the existence of a neuro-cancer cell interaction in vivo.
AB - The neurokinin-1 receptor (NK-1R) and its ligand substance P (SP) are involved in the pathogenesis of certain neural tumors. Because nerves are significantly altered in pancreatic cancer, evidence for alteration of this pathway in human pancreatic cancer was sought. Expression of NK-1R was analyzed by real-time quantitative RT-PCR, in situ hybridization, immunohistochemistry, and Western blot analysis in normal human pancreatic and pancreatic cancer tissue samples and in pancreatic cancer cell lines. Furthermore, the influence of SP analogs and of the NK-1R antagonist MEN 11467 on pancreatic cancer cell growth was analyzed by sulforhodamine B (SRB) assay. By real-time quantitative RT-PCR, NK-1R mRNA was increased 36.7-fold (p < 0.001) in human pancreatic cancer samples compared with normal controls. Enhanced NK-1R expression levels were not related to tumor grade but were associated with advanced tumor stage and poorer prognosis. By in situ hybridization and immunohistochemistry, NK-1R mRNA and immunoreactivity were only occasionally weakly present in acinar and ductal cells in the normal pancreas. In contrast, moderate to strong NK-1R mRNA signals and immunoreactivity were present in most cancer cells. By Western blot analysis, NK-1R was increased 26-fold (p < 0.01) in pancreatic cancer samples in comparison to normal controls. NK-1R mRNA was detected in five pancreatic cancer cell lines by real-time quantitative RT-PCR, with the highest levels in CAPAN-1 cells and the lowest in ASPC-1 cells. SP analogs stimulated pancreatic cancer cell growth, depending on the NK-1R expression level, and this effect could be blocked by a selective NK-1R antagonist. These findings illustrate that the NK-1R pathway is activated in human pancreatic cancer and has the potential to contribute to cancer cell growth, thus suggesting the existence of a neuro-cancer cell interaction in vivo.
UR - http://www.scopus.com/inward/record.url?scp=0038137331&partnerID=8YFLogxK
U2 - 10.1097/01.LAB.0000067499.57309.F6
DO - 10.1097/01.LAB.0000067499.57309.F6
M3 - Article
C2 - 12746482
AN - SCOPUS:0038137331
SN - 0023-6837
VL - 83
SP - 731
EP - 742
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 5
ER -