Neuroaed: Towards efficient abnormal event detection in visual surveillance with neuromorphic vision sensor

Guang Chen, Peigen Liu, Zhengfa Liu, Huajin Tang, Lin Hong, Jinhu Dong, Jorg Conradt, Alois Knoll

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Abnormal event detection is an important task in research and industrial applications, which has received considerable attention in recent years. Existing methods usually rely on standard frame-based cameras to record the data and process them with computer vision technologies. In contrast, this paper presents a novel neuromorphic vision based abnormal event detection system. Compared to the frame-based camera, neuromorphic vision sensors, such as Dynamic Vision Sensor (DVS), do not acquire full images at a fixed frame rate but rather have independent pixels that output intensity changes (called events) asynchronously at the time they occur. Thus, it avoids the design of the encryption scheme. Since events are triggered by moving edges on the scene, DVS is a natural motion detector for the abnormal objects and automatically filters out any temporally-redundant information. Based on this unique output, we first propose a highly efficient method based on the event density to select activated event cuboids and locate the foreground. We design a novel event-based multiscale spatio-Temporal descriptor to extract features from the activated event cuboids for the abnormal event detection. Additionally, we build the NeuroAED dataset, the first public dataset dedicated to abnormal event detection with neuromorphic vision sensor. The NeuroAED dataset consists of four sub-datasets: Walking, Campus, Square, and Stair dataset. Experiments are conducted based on these datasets and demonstrate the high efficiency and accuracy of our method.

Original languageEnglish
Article number9195516
Pages (from-to)923-936
Number of pages14
JournalIEEE Transactions on Information Forensics and Security
Volume16
DOIs
StatePublished - 2021

Keywords

  • Abnormal event detection
  • event based descriptors
  • neuromorphic vision sensor
  • optical flow
  • video surveillance

Fingerprint

Dive into the research topics of 'Neuroaed: Towards efficient abnormal event detection in visual surveillance with neuromorphic vision sensor'. Together they form a unique fingerprint.

Cite this