TY - GEN
T1 - Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging
AU - Huang, Wenqi
AU - Li, Hongwei Bran
AU - Pan, Jiazhen
AU - Cruz, Gastao
AU - Rueckert, Daniel
AU - Hammernik, Kerstin
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation. We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR. (Code available: https://github.com/wenqihuang/NIK_MRI ).
AB - In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation. We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR. (Code available: https://github.com/wenqihuang/NIK_MRI ).
KW - Cardiac MRI
KW - Deep Learning
KW - Image Reconstruction
KW - Neural Implicit Functions
KW - Non-Cartesian MRI
KW - k-Space Interpolation
UR - http://www.scopus.com/inward/record.url?scp=85163928251&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-34048-2_42
DO - 10.1007/978-3-031-34048-2_42
M3 - Conference contribution
AN - SCOPUS:85163928251
SN - 9783031340475
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 548
EP - 560
BT - Information Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings
A2 - Frangi, Alejandro
A2 - de Bruijne, Marleen
A2 - Wassermann, Demian
A2 - Navab, Nassir
PB - Springer Science and Business Media Deutschland GmbH
T2 - 28th International Conference on Information Processing in Medical Imaging, IPMI 2023
Y2 - 18 June 2023 through 23 June 2023
ER -