Neighborhood selection for thresholding-based subspace clustering

Reinhard Heckel, Eirikur Agustsson, Helmut Bölcskei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Subspace clustering refers to the problem of clustering high-dimensional data points into a union of low-dimensional linear subspaces, where the number of subspaces, their dimensions and orientations are all unknown. In this paper, we propose a variation of the recently introduced thresholding-based subspace clustering (TSC) algorithm, which applies spectral clustering to an adjacency matrix constructed from the nearest neighbors of each data point with respect to the spherical distance measure. The new element resides in an individual and data-driven choice of the number of nearest neighbors. Previous performance results for TSC, as well as for other subspace clustering algorithms based on spectral clustering, come in terms of an intermediate performance measure, which does not address the clustering error directly. Our main analytical contribution is a performance analysis of the modified TSC algorithm (as well as the original TSC algorithm) in terms of the clustering error directly.

Original languageEnglish
Title of host publication2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6761-6765
Number of pages5
ISBN (Print)9781479928927
DOIs
StatePublished - 2014
Externally publishedYes
Event2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
Duration: 4 May 20149 May 2014

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Country/TerritoryItaly
CityFlorence
Period4/05/149/05/14

Fingerprint

Dive into the research topics of 'Neighborhood selection for thresholding-based subspace clustering'. Together they form a unique fingerprint.

Cite this