TY - JOUR
T1 - Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries
AU - Yun, Jeongsik
AU - Sagehashi, Ryota
AU - Sato, Yoshihiko
AU - Masuda, Takuya
AU - Hoshino, Satoshi
AU - Rajendra, Hongahally Basappa
AU - Okuno, Kazuki
AU - Hosoe, Akihisa
AU - Bandarenka, Aliaksandr S.
AU - Yabuuchi, Naoaki
N1 - Publisher Copyright:
© 2021 National Academy of Sciences. All rights reserved.
PY - 2021/11/30
Y1 - 2021/11/30
N2 - The development of inherently safe energy devices is a key challenge, and aqueous Li-ion batteries draw large attention for this purpose. Due to the narrow electrochemical stable potential window of aqueous electrolytes, the energy density and the selection of negative electrode materials are significantly limited. For achieving durable and high-energy aqueous Li-ion batteries, the development of negative electrode materials exhibiting a large capacity and low potential without triggering decomposition of water is crucial. Herein, a type of a negative electrode material (i.e., LixNb2/7Mo3/7O2) is proposed for high-energy aqueous Li-ion batteries. LixNb2/7Mo3/7O2 delivers a large capacity of ∼170 mA · h · g21 with a low operating potential range of 1.9 to 2.8 versus Li/Li+ in 21 m lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) aqueous electrolyte. A full cell consisting of Li1.05Mn1.95O4/Li9/7Nb2/7Mo3/7O2 presents high energy density of 107 W · h · kg21 as the maximum value in 21 m LiTFSA aqueous electrolyte, and 73% in capacity retention is achieved after 2,000 cycles. Furthermore, hard X-ray photoelectron spectroscopy study reveals that a protective surface layer is formed at the surface of the negative electrode, by which the high-energy and durable aqueous batteries are realized with LixNb2/7Mo3/7O2. This work combines a high capacity with a safe negative electrode material through delivering the Mo-based oxide with unique nanosized and metastable characters.
AB - The development of inherently safe energy devices is a key challenge, and aqueous Li-ion batteries draw large attention for this purpose. Due to the narrow electrochemical stable potential window of aqueous electrolytes, the energy density and the selection of negative electrode materials are significantly limited. For achieving durable and high-energy aqueous Li-ion batteries, the development of negative electrode materials exhibiting a large capacity and low potential without triggering decomposition of water is crucial. Herein, a type of a negative electrode material (i.e., LixNb2/7Mo3/7O2) is proposed for high-energy aqueous Li-ion batteries. LixNb2/7Mo3/7O2 delivers a large capacity of ∼170 mA · h · g21 with a low operating potential range of 1.9 to 2.8 versus Li/Li+ in 21 m lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) aqueous electrolyte. A full cell consisting of Li1.05Mn1.95O4/Li9/7Nb2/7Mo3/7O2 presents high energy density of 107 W · h · kg21 as the maximum value in 21 m LiTFSA aqueous electrolyte, and 73% in capacity retention is achieved after 2,000 cycles. Furthermore, hard X-ray photoelectron spectroscopy study reveals that a protective surface layer is formed at the surface of the negative electrode, by which the high-energy and durable aqueous batteries are realized with LixNb2/7Mo3/7O2. This work combines a high capacity with a safe negative electrode material through delivering the Mo-based oxide with unique nanosized and metastable characters.
KW - Aqueous battery
KW - Metastable
KW - Rock-salt oxide
UR - http://www.scopus.com/inward/record.url?scp=85120358815&partnerID=8YFLogxK
U2 - 10.1073/pnas.2024969118
DO - 10.1073/pnas.2024969118
M3 - Article
C2 - 34815337
AN - SCOPUS:85120358815
SN - 0027-8424
VL - 118
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 48
M1 - e2024969118
ER -