TY - JOUR
T1 - Nanometer-Thick ITIC Bulk Heterojunction Films as Non-Fullerene Acceptors in Organic Solar Cells
AU - Huang, Tzu Yen
AU - Le Brun, Anton P.
AU - Sochor, Benedikt
AU - Wu, Chun Ming
AU - Bulut, Yusuf
AU - Müller-Buschbaum, Peter
AU - Roth, Stephan V.
AU - Yang, Yan Ling
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024
Y1 - 2024
N2 - The nanomorphology of bulk heterojunctions (BHJs) plays a critical role in determining the performance of non-fullerene organic solar cells (OSCs). Thermal annealing is commonly used to reorganize the donor and acceptor phases within the BHJs. In this study, we investigate the vertical morphology of BHJ blend films incorporating the poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′;5′,2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) polymer as the donor and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC) as the acceptor. Neutron reflectivity patterns and scattering length density profiles reveal that the surface of the BHJ films became diffuse when the annealing temperature was above 150 °C. We further find that mitigated agglomeration of PffBT4T-2OD side chains exhibits minimal impact on morphology post-annealing. Instead, ITIC molecules trigger aggregations, accompanied by interface diffusion and increased film roughness. X-ray scattering confirms a 5-fold increase in aggregated ITIC nanodomains after annealing. Our findings highlight that unstable ITIC phases dominate the BHJ morphology of thin films, leading to the thermal instability of OSCs. This study enhances our understanding of the BHJ morphology and offers insights into improving the performance of energy conversion devices.
AB - The nanomorphology of bulk heterojunctions (BHJs) plays a critical role in determining the performance of non-fullerene organic solar cells (OSCs). Thermal annealing is commonly used to reorganize the donor and acceptor phases within the BHJs. In this study, we investigate the vertical morphology of BHJ blend films incorporating the poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2′;5′,2″;5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD) polymer as the donor and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC) as the acceptor. Neutron reflectivity patterns and scattering length density profiles reveal that the surface of the BHJ films became diffuse when the annealing temperature was above 150 °C. We further find that mitigated agglomeration of PffBT4T-2OD side chains exhibits minimal impact on morphology post-annealing. Instead, ITIC molecules trigger aggregations, accompanied by interface diffusion and increased film roughness. X-ray scattering confirms a 5-fold increase in aggregated ITIC nanodomains after annealing. Our findings highlight that unstable ITIC phases dominate the BHJ morphology of thin films, leading to the thermal instability of OSCs. This study enhances our understanding of the BHJ morphology and offers insights into improving the performance of energy conversion devices.
KW - molecular interfaces
KW - non-fullerene acceptors
KW - organic solar cells
KW - surface roughness
KW - thermal aggregation
UR - http://www.scopus.com/inward/record.url?scp=85199690359&partnerID=8YFLogxK
U2 - 10.1021/acsanm.4c02865
DO - 10.1021/acsanm.4c02865
M3 - Article
AN - SCOPUS:85199690359
SN - 2574-0970
JO - ACS Applied Nano Materials
JF - ACS Applied Nano Materials
ER -