Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit

Nicola Lotti, Michele Xiloyannis, Francesco Missiroli, Casimir Bokranz, Domenico Chiaradia, Antonio Frisoli, Robert Riener, Lorenzo Masia

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

The intention-detection strategy used to drive an exosuit is fundamental to evaluate the effectiveness and acceptability of the device. Yet, current literature on wearable soft robotics lacks evidence on the comparative performance of different control approaches for online intention-detection. In the present work, we compare two different and complementary controllers on a wearable robotic suit, previously formulated and tested by our group; a model-based myoelectric control (myoprocessor), which estimates the joint torque from the activation of target muscles, and a force control that estimates human torques using an inverse dynamics model (dynamic arm). We test them on a cohort of healthy participants performing tasks replicating functional activities of daily living involving a wide range of dynamic movements. Our results suggest that both controllers are robust and effective in detecting human-motor interaction, and show comparable performance for augmenting muscular activity. In particular, the biceps brachii activity was reduced by up to 74% under the assistance of the dynamic arm and up to 47% under the myoprocessor, compared to a no-suit condition. However, the myoprocessor outperformed the dynamic arm in promptness and assistance during movements that involve high dynamics. The exosuit work normalized with respect to the overall work was 68.84 ± 3.81% when it was ran by the myoprocessor, compared to 45.29 ± 7.71% during the dynamic arm condition. The reliability and accuracy of motor intention detection strategies in wearable device is paramount for both the efficacy and acceptability of this technology. In this article, we offer a detailed analysis of the two most widely used control approaches, trying to highlight their intrinsic structural differences and to discuss their different and complementary performance.

Original languageEnglish
Pages (from-to)1363-1379
Number of pages17
JournalIEEE Transactions on Robotics
Volume38
Issue number3
DOIs
StatePublished - 1 Jun 2022
Externally publishedYes

Keywords

  • Control and learning for soft robots
  • control architectures and programming
  • humana machine interfaces (HRIs)
  • modeling
  • wearable robots

Fingerprint

Dive into the research topics of 'Myoelectric or Force Control? A Comparative Study on a Soft Arm Exosuit'. Together they form a unique fingerprint.

Cite this