Myelin in the central nervous system: Structure, function, and pathology

Christine Stadelmann, Sebastian Timmler, Alonso Barrantes-Freer, Mikael Simons

Research output: Contribution to journalArticlepeer-review

347 Scopus citations

Abstract

Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.

Original languageEnglish
Pages (from-to)1381-1431
Number of pages51
JournalPhysiological Reviews
Volume99
Issue number3
DOIs
StatePublished - Jul 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Myelin in the central nervous system: Structure, function, and pathology'. Together they form a unique fingerprint.

Cite this