TY - JOUR
T1 - Mycotoxin Altertoxin II Induces Lipid Peroxidation Connecting Mitochondrial Stress Response to NF-κB Inhibition in THP-1 Macrophages
AU - Del Favero, Giorgia
AU - Hohenbichler, Julia
AU - Mayer, Raphaela Maria
AU - Rychlik, Michael
AU - Marko, Doris
N1 - Publisher Copyright:
Copyright © 2020 American Chemical Society.
PY - 2020/2/17
Y1 - 2020/2/17
N2 - Prolonged exposure to mycotoxins, even in subtoxic concentrations, might contribute to modulate pro- or anti-inflammatory cascades and ultimately have long-term consequences on our health. In line, there is an increasing need to describe and comprehend the potential immunomodulatory effects of toxins that can be produced from fungi proliferating even in a domestic environment like, for instance, Alternaria alternata. Taking this as a starting point, we investigated the effects of one of the most potent genotoxic compounds produced by this fungi type, namely altertoxin II (ATXII) on THP-1 macrophages. In noncytotoxic concentrations (0.1-1 μM), ATXII inhibited the activation of the transcription factor NF-κB, and this event was accompanied by significant mitochondrial superoxide production (1 μM ATXII). Both responses seemed dependent on membrane structure and morphology since they were modulated by the coincubation with the cholesterol complexing agent methyl-β-cyclodextrin (MβCD, 10-50 μM). Moreover, toxicity of ATXII was enhanced by cholesterol load (cholesterol-MβCD). The mycotoxin induced also lipid peroxidation (1-10 μM, ATXII) possibly streaming down at the mitochondrial level and suppressing NF-κB activation in THP-1 macrophages.
AB - Prolonged exposure to mycotoxins, even in subtoxic concentrations, might contribute to modulate pro- or anti-inflammatory cascades and ultimately have long-term consequences on our health. In line, there is an increasing need to describe and comprehend the potential immunomodulatory effects of toxins that can be produced from fungi proliferating even in a domestic environment like, for instance, Alternaria alternata. Taking this as a starting point, we investigated the effects of one of the most potent genotoxic compounds produced by this fungi type, namely altertoxin II (ATXII) on THP-1 macrophages. In noncytotoxic concentrations (0.1-1 μM), ATXII inhibited the activation of the transcription factor NF-κB, and this event was accompanied by significant mitochondrial superoxide production (1 μM ATXII). Both responses seemed dependent on membrane structure and morphology since they were modulated by the coincubation with the cholesterol complexing agent methyl-β-cyclodextrin (MβCD, 10-50 μM). Moreover, toxicity of ATXII was enhanced by cholesterol load (cholesterol-MβCD). The mycotoxin induced also lipid peroxidation (1-10 μM, ATXII) possibly streaming down at the mitochondrial level and suppressing NF-κB activation in THP-1 macrophages.
UR - http://www.scopus.com/inward/record.url?scp=85079563095&partnerID=8YFLogxK
U2 - 10.1021/acs.chemrestox.9b00378
DO - 10.1021/acs.chemrestox.9b00378
M3 - Article
C2 - 32022557
AN - SCOPUS:85079563095
SN - 0893-228X
VL - 33
SP - 492
EP - 504
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 2
ER -