TY - GEN
T1 - Musical signal type discrimination based on large open feature sets
AU - Schuller, Björn
AU - Wallhoff, Frank
AU - Arsić, Dejan
AU - Rigoll, Gerhard
PY - 2006
Y1 - 2006
N2 - Automatic discrimination of musical signal types as speech, singing, music, genres or drumbeats within audio streams is of great importance e.g. for radio broadcast stream segmentation. Yet, feature sets are largely discussed. We therefore suggest a large open feature set approach starting with systematical generation of 7k hi-level features based on MPEG-7 Low-Level-Descriptors and further feature contours. A subsequent fast Gain Ratio reduction followed by wrapper-based Floating Search leads to a strong basis of relevant features. Next, features are added by alteration and combination within genetic search. For classification we use Support-Vector-Machines proven reliable for this task. Test-runs are carried out on two task-specific databases and the public Columbia SMD database and show significant improvements for each step of the suggested novel concept.
AB - Automatic discrimination of musical signal types as speech, singing, music, genres or drumbeats within audio streams is of great importance e.g. for radio broadcast stream segmentation. Yet, feature sets are largely discussed. We therefore suggest a large open feature set approach starting with systematical generation of 7k hi-level features based on MPEG-7 Low-Level-Descriptors and further feature contours. A subsequent fast Gain Ratio reduction followed by wrapper-based Floating Search leads to a strong basis of relevant features. Next, features are added by alteration and combination within genetic search. For classification we use Support-Vector-Machines proven reliable for this task. Test-runs are carried out on two task-specific databases and the public Columbia SMD database and show significant improvements for each step of the suggested novel concept.
UR - http://www.scopus.com/inward/record.url?scp=34247593868&partnerID=8YFLogxK
U2 - 10.1109/ICME.2006.262724
DO - 10.1109/ICME.2006.262724
M3 - Conference contribution
AN - SCOPUS:34247593868
SN - 1424403677
SN - 9781424403677
T3 - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
SP - 1089
EP - 1092
BT - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
T2 - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006
Y2 - 9 July 2006 through 12 July 2006
ER -