Multispectral Optoacoustic Tomography Enables In Vivo Anatomical and Functional Assessment of Human Tendons

Ivana Ivankovic, Hsiao Chun Amy Lin, Ali Özbek, Ana Orive, Xosé Luís Deán-Ben, Daniel Razansky

Research output: Contribution to journalArticlepeer-review

Abstract

Tendon injuries resulting from accidents and aging are increasing globally. However, key tendon functional parameters such as microvascularity and oxygen perfusion remain inaccessible via the currently available clinical diagnostic tools, resulting in disagreements on optimal treatment options. Here, a new noninvasive method for anatomical and functional characterization of human tendons based on multispectral optoacoustic tomography (MSOT) is reported. Healthy subjects are investigated using a hand-held scanner delivering real-time volumetric images. Tendons in the wrist, ankle, and lower leg are imaged in the near-infrared optical spectrum to utilize endogenous contrast from Type I collagen. Morphology of the flexor carpi ulnaris, carpi radialis, palmaris longus, and Achilles tendons are reconstructed in full. The functional roles of the flexor digitorium longus, hallicus longus, and the tibialis posterior tendons have been visualized by dynamic tracking during toe extension-flexion motion. Furthermore, major vessels and microvasculature near the Achilles tendon are localized, and the global increase in oxygen saturation in response to targeted exercise is confirmed by perfusion studies. MSOT is shown to be a versatile tool capable of anatomical and functional tendon assessments. Future studies including abnormal subjects can validate the method as a viable noninvasive clinical tool for tendinopathy management and healing monitoring.

Original languageEnglish
Article number2308336
JournalAdvanced Science
Volume11
Issue number18
DOIs
StatePublished - 15 May 2024
Externally publishedYes

Keywords

  • human tendon imaging
  • multispectral optoacoustic tomography
  • noninvasive imaging
  • tendon function
  • tendon vascularity

Fingerprint

Dive into the research topics of 'Multispectral Optoacoustic Tomography Enables In Vivo Anatomical and Functional Assessment of Human Tendons'. Together they form a unique fingerprint.

Cite this