Multiphysics Modeling of BAW Filters

A. Tag, V. Chauhan, R. Weigel, A. Hagelauer, B. Bader, C. Huck, M. Pitschi, D. Karolewski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

A novel approach for multiphysics modeling of BAW filters is presented allowing accurate and at the same time efficient modeling of BAW filters at high power levels. The approach takes the different types of losses and their spatial distribution into account in order to provide the required input for thermal simulation. The temperature distribution determined by thermal simulation is used to modify the geometry and the layer stack of each single resonator of the filter. In this way the required input for modeling of electromagnetic and acoustic behavior at high power level is generated. Moreover, the influence of the nonlinear behavior on the frequency shift of the resonance frequency is investigated. The high accuracy of the modeling approach is verified by measurements of the S-parameters and the temperature distribution by infrared thermography during high power loads.

Original languageEnglish
Title of host publication2015 IEEE International Ultrasonics Symposium, IUS 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479981823
DOIs
StatePublished - 13 Nov 2015
Externally publishedYes
EventIEEE International Ultrasonics Symposium, IUS 2015 - Taipei, Taiwan, Province of China
Duration: 21 Oct 201524 Oct 2015

Publication series

Name2015 IEEE International Ultrasonics Symposium, IUS 2015

Conference

ConferenceIEEE International Ultrasonics Symposium, IUS 2015
Country/TerritoryTaiwan, Province of China
CityTaipei
Period21/10/1524/10/15

Fingerprint

Dive into the research topics of 'Multiphysics Modeling of BAW Filters'. Together they form a unique fingerprint.

Cite this