Abstract
Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.
Original language | English |
---|---|
Pages (from-to) | 551-558 |
Number of pages | 8 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 42 |
Issue number | 1W1 |
DOIs | |
State | Published - 30 May 2017 |
Event | ISPRS Hannover Workshop 2017 on High-Resolution Earth Imaging for Geospatial Information, HRIGI 2017, City Models, Roads and Traffic , CMRT 2017, Image Sequence Analysis, ISA 2017, European Calibration and Orientation Workshop, EuroCOW 2017 - Hannover, Germany Duration: 6 Jun 2017 → 9 Jun 2017 |
Keywords
- Crop identification
- Deep learning
- Land cover classification
- Long short-term memory
- Recurrent neural networks
- Sentinel 2