Multi-Task Consistency for Active Learning

Aral Hekimoglu, Philipp Friedrich, Walter Zimmer, Michael Schmidt, Alvaro Marcos-Ramiro, Alois Knoll

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Learning-based solutions for vision tasks require a large amount of labeled training data to ensure their performance and reliability. In single-task vision-based settings, inconsistency-based active learning has proven to be effective in selecting informative samples for annotation. However, there is a lack of research exploiting the inconsistency between multiple tasks in multi-task networks. To address this gap, we propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation. Our approach leverages the inconsistency between them to identify informative samples across both tasks. We propose three constraints that specify how the tasks are coupled and introduce a method for determining the pixels belonging to the object detected by a bounding box, to later quantify the constraints as inconsistency scores. To evaluate the effectiveness of our approach, we establish multiple baselines for multi-task active learning and introduce a new metric, mean Detection Segmentation Quality (mDSQ), tailored for the multi-task active learning comparison that addresses the performance of both tasks. We conduct extensive experiments on the nuImages and A9 datasets, demonstrating that our approach outperforms existing state-of-the-art methods by up to 3.4% mDSQ on nuImages. Our approach achieves 95% of the fully-trained performance using only 67% of the available data, corresponding to 20% fewer labels compared to random selection and 5% fewer labels compared to state-of-the-art selection strategy. The code is available at https://github.com/aralhekimoglu/BoxMask.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3407-3416
Number of pages10
ISBN (Electronic)9798350307443
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings - 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Multi-Task Consistency for Active Learning'. Together they form a unique fingerprint.

Cite this