@inproceedings{d9632463dfb447559e3d2a394878994b,
title = "Multi-scale microaneurysms segmentation using embedding triplet loss",
abstract = "Deep learning techniques are recently being used in fundus image analysis and diabetic retinopathy detection. Microaneurysms are an important indicator of diabetic retinopathy progression. We introduce a two-stage deep learning approach for microaneurysms segmentation using multiple scales of the input with selective sampling and embedding triplet loss. The model first segments on two scales and then the segmentations are refined with a classification model. To enhance the discriminative power of the classification model, we incorporate triplet embedding loss with a selective sampling routine. The model is evaluated quantitatively to assess the segmentation performance and qualitatively to analyze the model predictions. This approach introduces a 30.29% relative improvement over the fully convolutional neural network.",
keywords = "Deep learning, Ophthalmology, Segmentation",
author = "Sarhan, {Mhd Hasan} and Shadi Albarqouni and Mehmet Yigitsoy and Nassir Navab and Abouzar Eslami",
note = "Publisher Copyright: {\textcopyright} 2019, Springer Nature Switzerland AG.; 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 ; Conference date: 13-10-2019 Through 17-10-2019",
year = "2019",
doi = "10.1007/978-3-030-32239-7_20",
language = "English",
isbn = "9783030322380",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "174--182",
editor = "Dinggang Shen and Pew-Thian Yap and Tianming Liu and Peters, {Terry M.} and Ali Khan and Staib, {Lawrence H.} and Caroline Essert and Sean Zhou",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings",
}