Multi-robot manipulation controlled by a human with haptic feedback

Dominik Sieber, Selma Musić, Sandra Hirche

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

The interaction of a single human with a team of cooperative robots, which collaboratively manipulate an object, poses a great challenge by means of the numerous possibilities of issuing commands to the team or providing appropriate feedback to the human. In this paper we propose a formation-based approach in order to avoid deformations of the object and to virtually couple the human to the formation. Here the human can be interpreted as a leader in a leader-follower formation with the robotic manipulators being the followers. The results of a controllability analysis in such a leader-follower formation suggest that it is beneficial to measure the state of the human (leader) by all physically cooperating manipulators (followers). The proposed approach is evaluated in a full-scale multi-robot cooperative manipulation experiment with humans.

Original languageEnglish
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2440-2446
Number of pages7
ISBN (Electronic)9781479999941
DOIs
StatePublished - 11 Dec 2015
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: 28 Sep 20152 Oct 2015

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

ConferenceIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
Country/TerritoryGermany
CityHamburg
Period28/09/152/10/15

Keywords

  • Controllability
  • Impedance
  • Manipulators
  • Robot kinematics
  • Robot sensing systems
  • Trajectory

Fingerprint

Dive into the research topics of 'Multi-robot manipulation controlled by a human with haptic feedback'. Together they form a unique fingerprint.

Cite this