TY - GEN
T1 - Multi-Relational Graph Neural Architecture Search with Fine-grained Message Passing
AU - Zheng, Xin
AU - Zhang, Miao
AU - Chen, Chunyang
AU - Li, Chaojie
AU - Zhou, Chuan
AU - Pan, Shirui
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Graph neural architecture search (NAS) has gained great popularity in automatically designing powerful graph neural networks (GNNs) with superior learning abilities, significantly relieving human effort and expertise reliance. Despite the advanced performance of automated learning, existing graph NAS models mainly work on single-relational graphs, while the widespread multi-relational graphs in real-world applications, are not well addressed. Moreover, current search spaces of automated GNNs are generally coarse-grained by simply integrating typical GNN layers and hyper-parameters, resulting in severe limitations on search capacities and scopes for creating innovative GNN architectures. To tackle the limitations of single-relational setting and coarse-grained search space design in existing graph NAS, in this paper, we propose a novel framework of multi-relational graph neural architecture search, dubbed MR-GNAS, to automatically develop innovative and excellent multi-relational GNN architectures. Specifically, to enlarge search capacities and improve search flexibility, MR-GNAS contains a fine-grained search space that embraces the full-pipe multi-relational message passing schema, enabling expressive architecture search scopes. With the well-designed fine-grained search space, MR-GNAS constructs a relation-aware supernet with a tree topology, to jointly learn discriminative node and relation representations. By searching with a gradient-based strategy in the supernet, the proposed MR-GNAS could derive excellent multi-relational GNN architectures in multi-relational graph analysis. Extensive experiments on entity classification and link prediction tasks over multi-relational graphs illustrate the effectiveness and superiority of the proposed method.
AB - Graph neural architecture search (NAS) has gained great popularity in automatically designing powerful graph neural networks (GNNs) with superior learning abilities, significantly relieving human effort and expertise reliance. Despite the advanced performance of automated learning, existing graph NAS models mainly work on single-relational graphs, while the widespread multi-relational graphs in real-world applications, are not well addressed. Moreover, current search spaces of automated GNNs are generally coarse-grained by simply integrating typical GNN layers and hyper-parameters, resulting in severe limitations on search capacities and scopes for creating innovative GNN architectures. To tackle the limitations of single-relational setting and coarse-grained search space design in existing graph NAS, in this paper, we propose a novel framework of multi-relational graph neural architecture search, dubbed MR-GNAS, to automatically develop innovative and excellent multi-relational GNN architectures. Specifically, to enlarge search capacities and improve search flexibility, MR-GNAS contains a fine-grained search space that embraces the full-pipe multi-relational message passing schema, enabling expressive architecture search scopes. With the well-designed fine-grained search space, MR-GNAS constructs a relation-aware supernet with a tree topology, to jointly learn discriminative node and relation representations. By searching with a gradient-based strategy in the supernet, the proposed MR-GNAS could derive excellent multi-relational GNN architectures in multi-relational graph analysis. Extensive experiments on entity classification and link prediction tasks over multi-relational graphs illustrate the effectiveness and superiority of the proposed method.
KW - automated graph learning
KW - fine-grained message passing
KW - graph neural architecture search
KW - graph neural networks
KW - multi-relational graphs
UR - http://www.scopus.com/inward/record.url?scp=85143065929&partnerID=8YFLogxK
U2 - 10.1109/ICDM54844.2022.00089
DO - 10.1109/ICDM54844.2022.00089
M3 - Conference contribution
AN - SCOPUS:85143065929
T3 - Proceedings - IEEE International Conference on Data Mining, ICDM
SP - 783
EP - 792
BT - Proceedings - 22nd IEEE International Conference on Data Mining, ICDM 2022
A2 - Zhu, Xingquan
A2 - Ranka, Sanjay
A2 - Thai, My T.
A2 - Washio, Takashi
A2 - Wu, Xindong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 22nd IEEE International Conference on Data Mining, ICDM 2022
Y2 - 28 November 2022 through 1 December 2022
ER -