Multi-material Additive Manufacturing by 3D Plasma Metal Deposition for Graded Structures of Super Duplex Alloy 1.4410 and the Austenitic Corrosion Resistant Alloy 1.4404

Kevin Hoefer, Alexander Nitsche, Kevin Gordon Abstoss, Goekan Ertugrul, Andre Haelsig, Peter Mayr

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In this work, 3D plasma-metal deposition (3DPMD) is introduced as an innovative additive manufacturing process for multi-material components. The possibility of the production of multi-material parts in a layer-by-layer design with 3DPMD was investigated. Multi-material demonstrators with a continuous transition from the super duplex steel 1.4410 to the austenitic steel 1.4404 have been prepared and investigated. By analyzing the hardness, ferrite content, mechanical-technological properties and microstructure, it was shown that the production of multi-material components using 3DPMD is possible. The properties of the transition zone lie between those of the two pure metals. The evaluation of stress–strain curves showed that the strength of the transition zone is higher than that of the austenitic material. It can be concluded that the production of graded steel structures between 1.4404 and 1.4410 using 3DPMD is possible, and mixing of the materials in the transition zone does not weaken the component. The 3DPMD process is suitable to produce functionally graded multi-material components out of metal powders.

Original languageEnglish
Pages (from-to)1554-1559
Number of pages6
JournalJOM
Volume71
Issue number4
DOIs
StatePublished - 15 Apr 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Multi-material Additive Manufacturing by 3D Plasma Metal Deposition for Graded Structures of Super Duplex Alloy 1.4410 and the Austenitic Corrosion Resistant Alloy 1.4404'. Together they form a unique fingerprint.

Cite this