TY - JOUR
T1 - Multi-DoFs nonlinear joint identification through substructure decoupling
AU - Di Manno, Matteo
AU - Trainotti, Francesco
AU - Rixen, Daniel J.
AU - Fregolent, Annalisa
N1 - Publisher Copyright:
© 2025 The Authors
PY - 2025/4/28
Y1 - 2025/4/28
N2 - Nonlinear joint identification is essential for predicting the dynamic behavior of complex mechanical systems with localized nonlinearities at the joint. The FRF Decoupling Method for Nonlinear Systems (FDM-NS) characterizes nonlinear joints by removing the linear dynamics of the connected subsystems from the nonlinear ones of the assembly. However, FDM-NS is only applicable to systems where the nonlinearity can be modeled as a single nonlinear elastic element connecting a pair of DoFs, and requires direct response measurements at these DoFs. This paper proposes an extension of FDM-NS to systems where the joint can be modeled as a single multi-DoFs element where several DoFs may exhibit nonlinearity, and overcomes the need of direct measurement at the joint DoFs which are in general inaccessible. The proposed method introduces the Virtual Point Transformation (VPT) into the FDM-NS. The VPT is used in real-time during measurements to obtain the relative displacement between the pairs of joint DoFs that exhibit nonlinearity. This enables controlling (i.e., fixing at a constant level) the relative displacement of a pair of nonlinear joint DoFs and obtaining the corresponding quasi-linear FRFs of the assembly needed for FDM-NS. The potential and limitations of the proposed method are investigated using experimental measurements on a laboratory testbed containing a multi-DoFs nonlinear joint. It is found that controlling only one pair of joint DoFs ensures that the relative displacement of the other pairs of nonlinear DoFs is effectively fixed during the measurements. The results show that the proposed method can correctly identify joints that can be modeled as a single multi-DoFs nonlinear element whose DoFs are inaccessible for measurements.
AB - Nonlinear joint identification is essential for predicting the dynamic behavior of complex mechanical systems with localized nonlinearities at the joint. The FRF Decoupling Method for Nonlinear Systems (FDM-NS) characterizes nonlinear joints by removing the linear dynamics of the connected subsystems from the nonlinear ones of the assembly. However, FDM-NS is only applicable to systems where the nonlinearity can be modeled as a single nonlinear elastic element connecting a pair of DoFs, and requires direct response measurements at these DoFs. This paper proposes an extension of FDM-NS to systems where the joint can be modeled as a single multi-DoFs element where several DoFs may exhibit nonlinearity, and overcomes the need of direct measurement at the joint DoFs which are in general inaccessible. The proposed method introduces the Virtual Point Transformation (VPT) into the FDM-NS. The VPT is used in real-time during measurements to obtain the relative displacement between the pairs of joint DoFs that exhibit nonlinearity. This enables controlling (i.e., fixing at a constant level) the relative displacement of a pair of nonlinear joint DoFs and obtaining the corresponding quasi-linear FRFs of the assembly needed for FDM-NS. The potential and limitations of the proposed method are investigated using experimental measurements on a laboratory testbed containing a multi-DoFs nonlinear joint. It is found that controlling only one pair of joint DoFs ensures that the relative displacement of the other pairs of nonlinear DoFs is effectively fixed during the measurements. The results show that the proposed method can correctly identify joints that can be modeled as a single multi-DoFs nonlinear element whose DoFs are inaccessible for measurements.
KW - Nonlinear experimental testing
KW - Nonlinear joint identification
KW - Substructure decoupling
KW - Virtual Point Transformation
UR - http://www.scopus.com/inward/record.url?scp=85215205595&partnerID=8YFLogxK
U2 - 10.1016/j.jsv.2025.118945
DO - 10.1016/j.jsv.2025.118945
M3 - Article
AN - SCOPUS:85215205595
SN - 0022-460X
VL - 602
JO - Journal of Sound and Vibration
JF - Journal of Sound and Vibration
M1 - 118945
ER -