MTL-Split: Multi-Task Learning for Edge Devices using Split Computing

Luigi Capogrosso, Enrico Fraccaroli, Samarjit Chakraborty, Franco Fummi, Marco Cristani

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Split Computing (SC), where a Deep Neural Network (DNN) is intelligently split with a part of it deployed on an edge device and the rest on a remote server is emerging as a promising approach. It allows the power of DNNs to be leveraged for latency-sensitive applications that do not allow the entire DNN to be deployed remotely, while not having sufficient computation bandwidth available locally. In many such embedded systems scenarios, such as those in the automotive domain, computational resource constraints also necessitate Multi-Task Learning (MTL), where the same DNN is used for multiple inference tasks instead of having dedicated DNNs for each task, which would need more computing bandwidth. However, how to partition such a multi-tasking DNN to be deployed within a SC framework has not been sufficiently studied. This paper studies this problem, and MTL-Split, our novel proposed architecture, shows encouraging results on both synthetic and real-world data. The source code is available at https://github.com/intelligolabs/MTL-Split.

Original languageEnglish
Title of host publicationProceedings of the 61st ACM/IEEE Design Automation Conference, DAC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798400706011
DOIs
StatePublished - 7 Nov 2024
Externally publishedYes
Event61st ACM/IEEE Design Automation Conference, DAC 2024 - San Francisco, United States
Duration: 23 Jun 202427 Jun 2024

Publication series

NameProceedings - Design Automation Conference
ISSN (Print)0738-100X

Conference

Conference61st ACM/IEEE Design Automation Conference, DAC 2024
Country/TerritoryUnited States
CitySan Francisco
Period23/06/2427/06/24

Keywords

  • Deep Neural Networks
  • Edge Devices
  • Multi-Task Learning
  • Split Computing

Fingerprint

Dive into the research topics of 'MTL-Split: Multi-Task Learning for Edge Devices using Split Computing'. Together they form a unique fingerprint.

Cite this