Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI

Bernhard Kainz, Christina Malamateniou, Maria Murgasova, Kevin Keraudren, Mary Rutherford, Joseph V. Hajnal, Daniel Rueckert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

In this paper we present a semi-automatic method for analysis of the fetal thorax in genuine three-dimensional volumes. After one initial click we localize the spine and accurately determine the volume of the fetal lung from high resolution volumetric images reconstructed from motion corrupted prenatal Magnetic Resonance Imaging (MRI). We compare the current state-of-the-art method of segmenting the lung in a slice-by-slice manner with the most recent multi-scan reconstruction methods. We use fast rotation invariant spherical harmonics image descriptors with Classification Forest ensemble learning methods to extract the spinal cord and show an efficient way to generate a segmentation prior for the fetal lung from this information for two different MRI field strengths. The spinal cord can be segmented with a DICE coefficient of 0.89 and the automatic lung segmentation has been evaluated with a DICE coefficient of 0.87. We evaluate our method on 29 fetuses with a gestational age (GA) between 20 and 38 weeks and show that our computed segmentations and the manual ground truth correlate well with the recorded values in literature.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings
PublisherSpringer Verlag
Pages284-291
Number of pages8
EditionPART 2
ISBN (Print)9783319104690
DOIs
StatePublished - 2014
Externally publishedYes
Event17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - Boston, MA, United States
Duration: 14 Sep 201418 Sep 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume8674 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Country/TerritoryUnited States
CityBoston, MA
Period14/09/1418/09/14

Fingerprint

Dive into the research topics of 'Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI'. Together they form a unique fingerprint.

Cite this