TY - JOUR
T1 - Morphology and optical properties of P3HT:MEH-CN-PPV blend films
AU - Ruderer, Matthias A.
AU - Wang, Cheng
AU - Schaible, Eric
AU - Hexemer, Alexander
AU - Xu, Ting
AU - Müller-Buschbaum, Peter
PY - 2013/6/11
Y1 - 2013/6/11
N2 - Thin photoactive polymer blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(5-(2-(ethylhexyloxy)-2-methoxycyanoterephthalyliden) (MEH-CN-PPV) are investigated. The morphology is probed as a function of blend ratio (21, 28, 44, 54, and 70 wt % P3HT) and annealing using imaging techniques and soft X-ray scattering. The surface structure is detected with optical microscopy and atomic force microscopy (AFM), the inner film morphology and the near-surface structure with grazing incidence resonant soft X-ray scattering (GI-RSoXS) using different X-ray energies. Characteristic lateral structures determined with GI-RSoXS are in agreement with AFM observations and complemented with optical microscopy. The topography and the inner film morphology have the same structural length scales. Grazing incidence wide-angle X-ray scattering (GIWAXS) results confirm the crystallinity of the P3HT domains, which is increasing with annealing, and shows no indication for crystallinity in MEH-CN-PPV. In addition, GIWAXS measurements reveal a blend ratio dependent orientation of P3HT crystals. Absorption and photoluminescence measurements complement the structural investigations.
AB - Thin photoactive polymer blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(5-(2-(ethylhexyloxy)-2-methoxycyanoterephthalyliden) (MEH-CN-PPV) are investigated. The morphology is probed as a function of blend ratio (21, 28, 44, 54, and 70 wt % P3HT) and annealing using imaging techniques and soft X-ray scattering. The surface structure is detected with optical microscopy and atomic force microscopy (AFM), the inner film morphology and the near-surface structure with grazing incidence resonant soft X-ray scattering (GI-RSoXS) using different X-ray energies. Characteristic lateral structures determined with GI-RSoXS are in agreement with AFM observations and complemented with optical microscopy. The topography and the inner film morphology have the same structural length scales. Grazing incidence wide-angle X-ray scattering (GIWAXS) results confirm the crystallinity of the P3HT domains, which is increasing with annealing, and shows no indication for crystallinity in MEH-CN-PPV. In addition, GIWAXS measurements reveal a blend ratio dependent orientation of P3HT crystals. Absorption and photoluminescence measurements complement the structural investigations.
UR - http://www.scopus.com/inward/record.url?scp=84878964611&partnerID=8YFLogxK
U2 - 10.1021/ma4006999
DO - 10.1021/ma4006999
M3 - Article
AN - SCOPUS:84878964611
SN - 0024-9297
VL - 46
SP - 4491
EP - 4501
JO - Macromolecules
JF - Macromolecules
IS - 11
ER -