TY - JOUR
T1 - Morphological analysis of inosculated connections in weeping figs
T2 - insights on density, geometry, fiber structures, and compositional variations
AU - Wang, Xiuli
AU - Gard, Wolfgang
AU - Mosleh, Yasmine
AU - van de Kuilen, Jan Willem
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2025/1
Y1 - 2025/1
N2 - Trees exhibit adaptability in response to external loads, which allows them to form an inosculated connection (self-growing connection) with a neighboring tree. Such connections have the mechanical potential to build living tree structures. Although qualitative studies have studied this phenomenon, quantitative analysis of its growth features remains limited. Self-growing connections fused by weeping figs (Ficus benjamina L.) are utilized to study growth features. X-ray scanning and optical microscopy techniques are employed to investigate parameters including density, geometry, fiber structures, and material compositions. Key findings demonstrate that the fused region of a connection has a larger volume and a higher density on the intersected surface. Microscopic analysis identifies that the enlarged wood in the fused area is tension wood characterized by G-layers. The key component that connects trees is referred to as merged fibers, and the pattern of their distribution is found to be mainly in the outer layer of the larger cross-angle of a connection. At the cellular level, crystals within cells are identified in the fused region, implying possible mechanical stresses the interface has experienced. The findings in self-growing connections can serve as inspiration for structural design in living structures, biomimicry, bioinspired structures, and advancements in bioeconomics.
AB - Trees exhibit adaptability in response to external loads, which allows them to form an inosculated connection (self-growing connection) with a neighboring tree. Such connections have the mechanical potential to build living tree structures. Although qualitative studies have studied this phenomenon, quantitative analysis of its growth features remains limited. Self-growing connections fused by weeping figs (Ficus benjamina L.) are utilized to study growth features. X-ray scanning and optical microscopy techniques are employed to investigate parameters including density, geometry, fiber structures, and material compositions. Key findings demonstrate that the fused region of a connection has a larger volume and a higher density on the intersected surface. Microscopic analysis identifies that the enlarged wood in the fused area is tension wood characterized by G-layers. The key component that connects trees is referred to as merged fibers, and the pattern of their distribution is found to be mainly in the outer layer of the larger cross-angle of a connection. At the cellular level, crystals within cells are identified in the fused region, implying possible mechanical stresses the interface has experienced. The findings in self-growing connections can serve as inspiration for structural design in living structures, biomimicry, bioinspired structures, and advancements in bioeconomics.
UR - http://www.scopus.com/inward/record.url?scp=85215094209&partnerID=8YFLogxK
U2 - 10.1007/s00226-024-01622-6
DO - 10.1007/s00226-024-01622-6
M3 - Article
AN - SCOPUS:85215094209
SN - 0043-7719
VL - 59
JO - Wood Science and Technology
JF - Wood Science and Technology
IS - 1
M1 - 24
ER -