Monotone closure of relaxed constraints in submodular optimization: Connections between minimization and maximization

Rishabh Iyer, Stefanie Jegelka, Jeff Bilmes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

It is becoming increasingly evident that many machine learning problems may be reduced to submodular optimization. Previous work addresses generic discrete approaches and specific relaxations. In this work, we take a generic view from a relaxation perspective. We show a relaxation formulation and simple rounding strategy that, based on the monotone closure of relaxed constraints, reveals analogies between minimization and maximization problems, and includes known results as special cases and extends to a wider range of settings. Our resulting approximation factors match the corresponding integrality gaps. For submodular maximization, a number of relaxation approaches have been proposed. A critical challenge for the practical applicability of these techniques, however, is the complexity of evaluating the multilinear extension. We show that this extension can be efficiently evaluated for a number of useful submodular functions, thus making these otherwise impractical algorithms viable for real-world machine learning problems.

Original languageEnglish
Title of host publicationUncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014
EditorsNevin L. Zhang, Jin Tian
PublisherAUAI Press
Pages360-369
Number of pages10
ISBN (Electronic)9780974903910
StatePublished - 2014
Externally publishedYes
Event30th Conference on Uncertainty in Artificial Intelligence, UAI 2014 - Quebec City, Canada
Duration: 23 Jul 201427 Jul 2014

Publication series

NameUncertainty in Artificial Intelligence - Proceedings of the 30th Conference, UAI 2014

Conference

Conference30th Conference on Uncertainty in Artificial Intelligence, UAI 2014
Country/TerritoryCanada
CityQuebec City
Period23/07/1427/07/14

Fingerprint

Dive into the research topics of 'Monotone closure of relaxed constraints in submodular optimization: Connections between minimization and maximization'. Together they form a unique fingerprint.

Cite this