Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing

Mario Rothbauer, Gregor Höll, Christoph Eilenberger, Sebastian R.A. Kratz, Bilal Farooq, Patrick Schuller, Isabel Olmos Calvo, Ruth A. Byrne, Brigitte Meyer, Birgit Niederreiter, Seta Küpcü, Florian Sevelda, Johannes Holinka, Oliver Hayden, Sandro F. Tedde, Hans P. Kiener, Peter Ertl

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Rheumatoid arthritis is a chronic, systemic joint disease in which an autoimmune response translates into an inflammatory attack resulting in joint damage, disability and decreased quality of life. Despite recent introduction of therapeutic agents such as anti-TNFα, even the best current therapies fail to achieve disease remission in most arthritis patients. Therefore, research into the mechanisms governing the destructive inflammatory process in rheumatoid arthritis is of great importance and may reveal novel strategies for the therapeutic interventions. To gain deeper insight into its pathogensis, we have developed for the first time a three-dimensional synovium-on-a-chip system in order to monitor the onset and progression of inflammatory synovial tissue responses. In our study, patient-derived primary synovial organoids are cultivated on a single chip platform containing embedded organic-photodetector arrays for over a week in the absence and presence of tumor-necrosis-factor. Using a label-free and non-invasive optical light-scatter biosensing strategy inflammation-induced 3D tissue-level architectural changes were already detected after two days. We demonstrate that the integration of complex human synovial organ cultures in a lab-on-a-chip provides reproducible and reliable information on how systemic stress factors affect synovial tissue architectures.

Original languageEnglish
Pages (from-to)1461-1471
Number of pages11
JournalLab on a Chip
Volume20
Issue number8
DOIs
StatePublished - 21 Apr 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing'. Together they form a unique fingerprint.

Cite this