Molecular characterization of Pax62Neu through Pax610Neu: An extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus

Jack Favor, Heiko Peters, Thomas Hermann, Wolfgang Schmahl, Bimal Chatterjee, Angelika Neuhäuser-Klaus, Rodica Sandulache

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Phenotype-based mutagenesis experiments will increase the mouse mutant resource, generating mutations at previously unmarked loci as well as extending the allelic series at known loci. Mapping, molecular characterization, and phenotypic analysis of nine independent Pax6 mutations of the mouse recovered in mutagenesis experiments is presented. Seven mutations result in premature termination of translation and all express phenotypes characteristic of null alleles, suggesting that Pax6 function requires all domains to be intact. Of major interest is the identification of two possible hypomorph mutations: Heterozygotes express less severe phenotypes and homozygotes develop rudimentary eyes and nasal processes and survive up to 36 hr after birth. Pax64Neu results in an amino acid substitution within the third helix of the homeodomain. Three-dimensional modeling indicates that the amino acid substitution interrupts the homeodomain recognition α-helix, which is critical for DNA binding. Whereas cooperative dimer binding of the mutant homeodomain to a paired-class DNA target sequence was eliminated, weak monomer binding was observed. Thus, a residual function of the mutated homeodomain may explain the hypomorphic nature of the Pax64Neu allele. Pax67Neu is a base pair substitution in the Kozak sequence and results in a reduced level of Pax6 translation product. The Pax64Neu and Pax67Neu alleles may be very useful for gene-dosage studies.

Original languageEnglish
Pages (from-to)1689-1700
Number of pages12
JournalGenetics
Volume159
Issue number4
StatePublished - 2001
Externally publishedYes

Fingerprint

Dive into the research topics of 'Molecular characterization of Pax62Neu through Pax610Neu: An extension of the Pax6 allelic series and the identification of two possible hypomorph alleles in the mouse Mus musculus'. Together they form a unique fingerprint.

Cite this