Abstract
We report that an ultrafast kinetics of reversible metal-ion insertion can be realized in anatase titanium dioxide (TiO2). Niobium ions (Nb5+) were carefully chosen to dope and drive anatase TiO2 into very thin nanosheets standing perpendicularly onto transparent conductive electrode (TCE) and simultaneously construct TiO2 with an ion-conducting surface together with expanded ion diffusion channels, which enabled ultrafast metal ions to diffuse across the electrolyte/solid interface and into the bulk of TiO2. To demonstrate the superior metal-ion insertion rate, the electrochromic features induced by ion intercalation were examined, which exhibited the best color switching speed of 4.82 s for coloration and 0.91 s for bleaching among all reported nanosized TiO2 devices. When performed as the anode for the secondary battery, the modified TiO2 was capable to deliver a highly reversible capacity of 61.2 mAh/g at an ultrahigh specific current rate of 60 C (10.2 A/g). This fast metal-ion insertion behavior was systematically investigated by the well-controlled electrochemical approaches, which quantitatively revealed both the enhanced surface kinetics and bulk ion diffusion rate. Our study could provide a facile methodology to modulate the ion diffusion kinetics for metal oxides.
Original language | English |
---|---|
Pages (from-to) | 29186-29193 |
Number of pages | 8 |
Journal | ACS Applied Materials and Interfaces |
Volume | 8 |
Issue number | 42 |
DOIs | |
State | Published - 26 Oct 2016 |
Externally published | Yes |
Keywords
- TiO nanosheets
- doping modulation
- lattice expansion
- metal-ion diffusion
- surface kinetics