TY - JOUR
T1 - Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering
T2 - A comprehensive LES study of the FDA benchmark nozzle model
AU - Fehn, Niklas
AU - Wall, Wolfgang A.
AU - Kronbichler, Martin
N1 - Publisher Copyright:
© 2019 John Wiley & Sons, Ltd.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - This work uses high-order discontinuous Galerkin discretization techniques to simulate transitional and turbulent flows through medical devices. Flows through medical devices are characterized by moderate Reynolds numbers and typically involve different flow regimes such as laminar, transitional, and turbulent flows. Previous studies for the FDA benchmark nozzle model revealed limitations of Reynolds-averaged Navier-Stokes turbulence models when applied to more complex flow scenarios. Recent works based on large-eddy simulation approaches indicate that these limitations can be overcome but also highlight potential limitations due to a high sensitivity with respect to numerical parameters. The methodology presented in this work introduces two novel ingredients compared with previous studies. Firstly, we use high-order discontinuous Galerkin methods for discretization in space. The inherent dissipation and dispersion properties of high-order discontinuous Galerkin discretizations are expected to render this approach well suited for transitional and turbulent flow simulations. Secondly, to mimic blinded CFD studies, we propose to use a precursor simulation approach in order to predict the inflow boundary condition for laminar, transitional, and turbulent flow regimes instead of prescribing analytical velocity profiles at the inflow. We investigate the whole range of Reynolds numbers as suggested by the FDA benchmark nozzle problem and compare the numerical results to experimental data obtained by particle image velocimetry in order to critically assess the predictive capabilities of the solver on the one hand and the suitability of the FDA nozzle problem as a benchmark in computational fluid dynamics on the other hand.
AB - This work uses high-order discontinuous Galerkin discretization techniques to simulate transitional and turbulent flows through medical devices. Flows through medical devices are characterized by moderate Reynolds numbers and typically involve different flow regimes such as laminar, transitional, and turbulent flows. Previous studies for the FDA benchmark nozzle model revealed limitations of Reynolds-averaged Navier-Stokes turbulence models when applied to more complex flow scenarios. Recent works based on large-eddy simulation approaches indicate that these limitations can be overcome but also highlight potential limitations due to a high sensitivity with respect to numerical parameters. The methodology presented in this work introduces two novel ingredients compared with previous studies. Firstly, we use high-order discontinuous Galerkin methods for discretization in space. The inherent dissipation and dispersion properties of high-order discontinuous Galerkin discretizations are expected to render this approach well suited for transitional and turbulent flow simulations. Secondly, to mimic blinded CFD studies, we propose to use a precursor simulation approach in order to predict the inflow boundary condition for laminar, transitional, and turbulent flow regimes instead of prescribing analytical velocity profiles at the inflow. We investigate the whole range of Reynolds numbers as suggested by the FDA benchmark nozzle problem and compare the numerical results to experimental data obtained by particle image velocimetry in order to critically assess the predictive capabilities of the solver on the one hand and the suitability of the FDA nozzle problem as a benchmark in computational fluid dynamics on the other hand.
KW - FDA benchmark
KW - computational fluid dynamics
KW - discontinuous Galerkin method
KW - large-eddy simulation
KW - transitional and turbulent flows
UR - http://www.scopus.com/inward/record.url?scp=85074490138&partnerID=8YFLogxK
U2 - 10.1002/cnm.3228
DO - 10.1002/cnm.3228
M3 - Article
C2 - 31232525
AN - SCOPUS:85074490138
SN - 2040-7939
VL - 35
JO - International Journal for Numerical Methods in Biomedical Engineering
JF - International Journal for Numerical Methods in Biomedical Engineering
IS - 12
M1 - e3228
ER -