TY - GEN
T1 - Modeling of the ultra-stable operating regime in fourier domain mode locked (FDML) lasers
AU - Schmidt, Mark
AU - Pfeiffer, Tom
AU - Grill, Christin
AU - Huber, Robert
AU - Jirauschek, Christian
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/6
Y1 - 2019/6
N2 - Fourier domain mode locked (FDML) fiber lasers are broadband wavelength-swept ring systems with record sweep speeds. Lasing is achieved by synchronizing the roundtrip time of the optical field in the fiber delay cavity with the sweep period of a tunable Fabry-Perot (FP) bandpass filter. Since their invention in 2006, FDML lasers have dramatically enhanced the capabilities of optical coherence tomography (OCT) and various sensing applications. However, the physical coherence limits, such as the maximum achievable coherence length, are yet unknown. An important breakthrough in reaching this limit is a recently experimentally demonstrated highly coherent operation mode over a bandwidth of more than 100 nm [1], referred to as the sweet spot. The sweet spot operation mode is characterized by nearly shot-noise limited fluctuations in the intensity trace of the laser with significantly enhanced coherence properties, whereas in conventional FDML laser systems the intensity trace is distorted by high frequency noise which negatively affects the coherence length. This ultra-low noise operating regime was generated by an almost perfect compensation of the fiber dispersion with a manually fine tuned chirped fiber Bragg grating and a highly synchronized sweep rate of the FP filter with an accuracy in the range of mHz. Polarization effects were controlled with a polarization maintaining semiconductor optical amplifier (SOA) gain medium and a polarization controller.
AB - Fourier domain mode locked (FDML) fiber lasers are broadband wavelength-swept ring systems with record sweep speeds. Lasing is achieved by synchronizing the roundtrip time of the optical field in the fiber delay cavity with the sweep period of a tunable Fabry-Perot (FP) bandpass filter. Since their invention in 2006, FDML lasers have dramatically enhanced the capabilities of optical coherence tomography (OCT) and various sensing applications. However, the physical coherence limits, such as the maximum achievable coherence length, are yet unknown. An important breakthrough in reaching this limit is a recently experimentally demonstrated highly coherent operation mode over a bandwidth of more than 100 nm [1], referred to as the sweet spot. The sweet spot operation mode is characterized by nearly shot-noise limited fluctuations in the intensity trace of the laser with significantly enhanced coherence properties, whereas in conventional FDML laser systems the intensity trace is distorted by high frequency noise which negatively affects the coherence length. This ultra-low noise operating regime was generated by an almost perfect compensation of the fiber dispersion with a manually fine tuned chirped fiber Bragg grating and a highly synchronized sweep rate of the FP filter with an accuracy in the range of mHz. Polarization effects were controlled with a polarization maintaining semiconductor optical amplifier (SOA) gain medium and a polarization controller.
UR - http://www.scopus.com/inward/record.url?scp=85074633957&partnerID=8YFLogxK
U2 - 10.1109/CLEOE-EQEC.2019.8873213
DO - 10.1109/CLEOE-EQEC.2019.8873213
M3 - Conference contribution
AN - SCOPUS:85074633957
T3 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
BT - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Y2 - 23 June 2019 through 27 June 2019
ER -