Modeling of the ultra-stable operating regime in fourier domain mode locked (FDML) lasers

Mark Schmidt, Tom Pfeiffer, Christin Grill, Robert Huber, Christian Jirauschek

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Fourier domain mode locked (FDML) fiber lasers are broadband wavelength-swept ring systems with record sweep speeds. Lasing is achieved by synchronizing the roundtrip time of the optical field in the fiber delay cavity with the sweep period of a tunable Fabry-Perot (FP) bandpass filter. Since their invention in 2006, FDML lasers have dramatically enhanced the capabilities of optical coherence tomography (OCT) and various sensing applications. However, the physical coherence limits, such as the maximum achievable coherence length, are yet unknown. An important breakthrough in reaching this limit is a recently experimentally demonstrated highly coherent operation mode over a bandwidth of more than 100 nm [1], referred to as the sweet spot. The sweet spot operation mode is characterized by nearly shot-noise limited fluctuations in the intensity trace of the laser with significantly enhanced coherence properties, whereas in conventional FDML laser systems the intensity trace is distorted by high frequency noise which negatively affects the coherence length. This ultra-low noise operating regime was generated by an almost perfect compensation of the fiber dispersion with a manually fine tuned chirped fiber Bragg grating and a highly synchronized sweep rate of the FP filter with an accuracy in the range of mHz. Polarization effects were controlled with a polarization maintaining semiconductor optical amplifier (SOA) gain medium and a polarization controller.

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728104690
DOIs
StatePublished - Jun 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

Name2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint

Dive into the research topics of 'Modeling of the ultra-stable operating regime in fourier domain mode locked (FDML) lasers'. Together they form a unique fingerprint.

Cite this