Modeling of CO emissions in multi-burner systems with fuel staging

Noah Klarmann, Benjamin Timo Zoller, Thomas Sattelmayer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

This work presents a novel strategy to numerically predict CO emissions in gas turbines that operate under part-load conditions employing fuel-staging concepts. In multi-burner systems, fuel can be redistributed to solely run a fraction of the available burners. The situation of active burners interacting with air from adjacent cold burners may lead to quenching effects. Our group recently published a flamelet-based combustion model for low-reactive conditions. Furthermore, a model was proposed for the prediction of CO beyond the assumption of thin reaction zones. These models are adopted in this work and further extended in order to capture quenching. All models are implemented and applied to a simple geometry for the purpose of demonstrating basic mechanisms that are relevant for fuel-staged gas turbines operating at part load conditions. Furthermore, validation is performed in a silo combustor that comprises 37 burners. Here, burner groups are switched off during part load, leading to intense interaction between hot and cold burners. Major improvement in comparison to CO predictions from the flamelet-based combustion model is achieved. It is demonstrated that the model is able to predict the correct values of global CO emissions. Furthermore, the models capacity of handling fuel-staging mechanisms like the CO drop during a burner switch-off event is shown.

Original languageEnglish
Title of host publicationCombustion, Fuels, and Emissions
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858615
DOIs
StatePublished - 2019
EventASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, United States
Duration: 17 Jun 201921 Jun 2019

Publication series

NameProceedings of the ASME Turbo Expo

Conference

ConferenceASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Country/TerritoryUnited States
CityPhoenix
Period17/06/1921/06/19

Fingerprint

Dive into the research topics of 'Modeling of CO emissions in multi-burner systems with fuel staging'. Together they form a unique fingerprint.

Cite this