TY - JOUR
T1 - Modeling of 2D diffusion processes based on microscopy data
T2 - Parameter estimation and practical identifiability analysis
AU - Hock, Sabrina
AU - Hasenauer, Jan
AU - Theis, Fabian J.
N1 - Funding Information:
We thank Michael Sixt for getting us interested in the problem of haptotaxis. Furthermore, we would like to thank the unknown reviewers, who provided excellent comments and held to improve the paper significantly. This work was supported by the Helmholtz Alliance on Systems Biology project ‘CoReNe’, the European Union within the ERC grant ‘LatentCauses’, the BMBF grant ‘Virtual Liver’ (grant-nr. 315752).
Funding Information:
Publication costs were financed by the Helmholtz Zentrum Muenchen GmbH. This article has been published as part of BMC Bioinformatics Volume 14 Supplement 10, 2013: Selected articles from the 10th International Workshop on Computational Systems Biology (WCSB) 2013: Bioinformatics. The full contents of the supplement are available online at http://www. biomedcentral.com/bmcbioinformatics/supplements/14/S10.
PY - 2013/8/12
Y1 - 2013/8/12
N2 - Background: Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters.Methods: We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes.Results and conclusion: As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
AB - Background: Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters.Methods: We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes.Results and conclusion: As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
UR - http://www.scopus.com/inward/record.url?scp=84886829968&partnerID=8YFLogxK
U2 - 10.1186/1471-2105-14-S10-S7
DO - 10.1186/1471-2105-14-S10-S7
M3 - Article
C2 - 24267545
AN - SCOPUS:84886829968
SN - 1471-2105
VL - 14
JO - BMC Bioinformatics
JF - BMC Bioinformatics
IS - SUPPL10
M1 - S7
ER -