TY - JOUR
T1 - Modeling credit portfolio derivatives, including both a default and a prepayment feature
AU - Hieber, Peter
AU - Scherer, Matthias
PY - 2013/9
Y1 - 2013/9
N2 - Apart from heteronomy exit events such as, for example credit default or death, several financial agreements allow policy holders to voluntarily terminate the contract. Examples include callable mortgages or life insurance contracts. For the contractual counterpart, the result is a cash-flow uncertainty called prepayment risk. Despite the high relevance of this implicit option, only few portfolio models consider both a default and a cancellability feature. On a portfolio level, this is especially critical because empirical observations of the mortgage market suggest that prepayment risk is an important determinant for the pricing of mortgage-backed securities. Furthermore, defaults and prepayments tend to occur in clusters, and there is evidence for a negative association between the two risks. This paper presents a realistic and tractable portfolio model that takes into account these observations. Technically, we rely on an Archimedean dependence structure. A suitable parameterization allows to fit the likelihood of default and prepayment clusters separately and accounts for the postulated negative interdependence. Moreover, this structure turns out to be tractable enough for real-time evaluation of portfolio derivatives. As an application, the pricing of loan credit default swaps, an example of a portfolio derivative that includes a cancellability feature, is discussed.
AB - Apart from heteronomy exit events such as, for example credit default or death, several financial agreements allow policy holders to voluntarily terminate the contract. Examples include callable mortgages or life insurance contracts. For the contractual counterpart, the result is a cash-flow uncertainty called prepayment risk. Despite the high relevance of this implicit option, only few portfolio models consider both a default and a cancellability feature. On a portfolio level, this is especially critical because empirical observations of the mortgage market suggest that prepayment risk is an important determinant for the pricing of mortgage-backed securities. Furthermore, defaults and prepayments tend to occur in clusters, and there is evidence for a negative association between the two risks. This paper presents a realistic and tractable portfolio model that takes into account these observations. Technically, we rely on an Archimedean dependence structure. A suitable parameterization allows to fit the likelihood of default and prepayment clusters separately and accounts for the postulated negative interdependence. Moreover, this structure turns out to be tractable enough for real-time evaluation of portfolio derivatives. As an application, the pricing of loan credit default swaps, an example of a portfolio derivative that includes a cancellability feature, is discussed.
KW - Archimedean copula
KW - default risk
KW - portfolio default and prepayment model
KW - prepayment risk
UR - http://www.scopus.com/inward/record.url?scp=84885665015&partnerID=8YFLogxK
U2 - 10.1002/asmb.1931
DO - 10.1002/asmb.1931
M3 - Article
AN - SCOPUS:84885665015
SN - 1524-1904
VL - 29
SP - 479
EP - 495
JO - Applied Stochastic Models in Business and Industry
JF - Applied Stochastic Models in Business and Industry
IS - 5
ER -