Modeling and quantification of acoustic damping induced by vortex shedding in non-compact thermoacoustic systems

Thomas Hofmeister, Tobias Hummel, Bruno Schuermans, Thomas Sattelmayer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

This paper presents a methodology to compute acoustic damping rates of transversal, high-frequency modes induced by vortex-shedding. The acoustic damping rate presents one key quantity for the assessment of the linear thermoacoustic stability of gas turbine combustors. State of the art network models – as employed to calculate damping rates in low-frequency, longitudinal systems – cannot fulfill this task due to the acoustic non-compactness encountered in the high-frequency regime. Furthermore, it is yet unclear, whether direct eigensolutions of the Linearized Euler Equations (LEE), which capture the mechanism of vortex shedding, yield correct damping rate results constituted by the implicit presence of acoustic as well as hydrodynamic contributions in these solutions. The methodology’s applicability to technically relevant systems is demonstrated by a validation test case using a lab-scale, swirl-stabilized combustion system.

Original languageEnglish
Title of host publicationCombustion, Fuels, and Emissions
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858615
DOIs
StatePublished - 2019
EventASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019 - Phoenix, United States
Duration: 17 Jun 201921 Jun 2019

Publication series

NameProceedings of the ASME Turbo Expo
Volume4A-2019

Conference

ConferenceASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Country/TerritoryUnited States
CityPhoenix
Period17/06/1921/06/19

Fingerprint

Dive into the research topics of 'Modeling and quantification of acoustic damping induced by vortex shedding in non-compact thermoacoustic systems'. Together they form a unique fingerprint.

Cite this