Modeling and Control of Intrinsically Elasticity Coupled Soft-Rigid Robots

Zach J. Patterson, Cosimo Della Santina, Daniela Rus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

While much work has been done recently in the realm of model-based control of soft robots and soft-rigid hybrids, most works examine robots that have an inherently serial structure. While these systems have been prevalent in the literature, there is an increasing trend toward designing soft-rigid hybrids with intrinsically coupled elasticity between various degrees of freedom. In this work, we seek to address the issues of modeling and controlling such structures, particularly when underactuated. We introduce several simple models for elastic coupling, typical of those seen in these systems. We then propose a controller that compensates for the elasticity, and we prove its stability with Lyapunov methods without relying on the elastic dominance assumption. This controller is applicable to the general class of underactuated soft robots. After evaluating the controller in simulated cases, we then develop a simple hardware platform to evaluate both the models and the controller. Finally, using the hardware, we demonstrate a novel use case for underactuated, elastically coupled systems in "sensorless"force control.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages14995-15001
Number of pages7
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Externally publishedYes
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Fingerprint

Dive into the research topics of 'Modeling and Control of Intrinsically Elasticity Coupled Soft-Rigid Robots'. Together they form a unique fingerprint.

Cite this