Model-based tomographic optoacoustic reconstructions in acoustically attenuating media

X. Luís Deán-Ben, Daniel Razansky

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Acoustic attenuation influences the transmission of the ultrasonic waves excited optoacoustically in biological samples, in a way that the amplitude of the waves is reduced as they propagate through acoustically attenuating tissues. Furthermore, being dependent on frequency, acoustic attenuation also causes broadening of the time-resolved optoacoustic signals, which in turn leads to blurring of features and overall deterioration of image quality. The effects of acoustic attenuation are more prominent for the high frequency components of the optoacoustic waves and they must be taken into account for high resolution imaging. In this work, we modify a model-based reconstruction algorithm to incorporate the effects of acoustic attenuation in tomographic optoacoustic imaging set-ups. As the waves propagate from the excitation until the measurement points, they undergo space and frequency dependent attenuation, which can be effectively accounted for using the suggested model-based approach. The simulation results obtained showcase a good performance of the introduced method in terms of resolution improvement.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2014
PublisherSPIE
ISBN (Print)9780819498564
DOIs
StatePublished - 2014
EventPhotons Plus Ultrasound: Imaging and Sensing 2014 - San Francisco, CA, United States
Duration: 2 Feb 20145 Feb 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8943
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2014
Country/TerritoryUnited States
CitySan Francisco, CA
Period2/02/145/02/14

Keywords

  • Acoustic attenuation
  • Model-based reconstruction
  • Optoacoustic tomography
  • Photoacoustic tomography

Fingerprint

Dive into the research topics of 'Model-based tomographic optoacoustic reconstructions in acoustically attenuating media'. Together they form a unique fingerprint.

Cite this