TY - JOUR
T1 - Mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
AU - Chong, S. H.
AU - Götze, W.
AU - Singh, A. P.
PY - 2001
Y1 - 2001
N2 - Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule’s arrested position in the glass state and the reorientational correlators for angular-momentum index (Formula presented) and (Formula presented) near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the (Formula presented) process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. 65, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule’s inertia parameters.
AB - Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule’s arrested position in the glass state and the reorientational correlators for angular-momentum index (Formula presented) and (Formula presented) near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the (Formula presented) process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. 65, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule’s inertia parameters.
UR - http://www.scopus.com/inward/record.url?scp=18644374085&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.63.011206
DO - 10.1103/PhysRevE.63.011206
M3 - Article
AN - SCOPUS:18644374085
SN - 1063-651X
VL - 63
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 1
ER -