TY - GEN
T1 - Mind Your Neighbours
T2 - Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
AU - Santosh, T. Y.S.S.
AU - Sarwat, Hassan
AU - Abdou, Ahmed
AU - Grabmair, Matthias
N1 - Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.
PY - 2024
Y1 - 2024
N2 - Rhetorical Role Labeling (RRL) of legal judgments is essential for various tasks, such as case summarization, semantic search and argument mining. However, it presents challenges such as inferring sentence roles from context, interrelated roles, limited annotated data, and label imbalance. This study introduces novel techniques to enhance RRL performance by leveraging knowledge from semantically similar instances (neighbours). We explore inference-based and training-based approaches, achieving remarkable improvements in challenging macro-F1 scores. For inference-based methods, we explore interpolation techniques that bolster label predictions without re-training. While in training-based methods, we integrate prototypical learning with our novel discourse-aware contrastive method that work directly on embedding spaces. Additionally, we assess the cross-domain applicability of our methods, demonstrating their effectiveness in transferring knowledge across diverse legal domains.
AB - Rhetorical Role Labeling (RRL) of legal judgments is essential for various tasks, such as case summarization, semantic search and argument mining. However, it presents challenges such as inferring sentence roles from context, interrelated roles, limited annotated data, and label imbalance. This study introduces novel techniques to enhance RRL performance by leveraging knowledge from semantically similar instances (neighbours). We explore inference-based and training-based approaches, achieving remarkable improvements in challenging macro-F1 scores. For inference-based methods, we explore interpolation techniques that bolster label predictions without re-training. While in training-based methods, we integrate prototypical learning with our novel discourse-aware contrastive method that work directly on embedding spaces. Additionally, we assess the cross-domain applicability of our methods, demonstrating their effectiveness in transferring knowledge across diverse legal domains.
KW - Contrastive Learning
KW - Interpolation
KW - Prototypical Learning
KW - Rhetorical Role Labeling
UR - http://www.scopus.com/inward/record.url?scp=85195897982&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85195897982
T3 - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
SP - 11296
EP - 11306
BT - 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings
A2 - Calzolari, Nicoletta
A2 - Kan, Min-Yen
A2 - Hoste, Veronique
A2 - Lenci, Alessandro
A2 - Sakti, Sakriani
A2 - Xue, Nianwen
PB - European Language Resources Association (ELRA)
Y2 - 20 May 2024 through 25 May 2024
ER -