TY - JOUR
T1 - Milk protein fractionation by means of spiral-wound microfiltration membranes
T2 - Effect of the pressure adjustment mode and temperature on flux and protein permeation
AU - Hartinger, Martin
AU - Heidebrecht, Hans Jürgen
AU - Schiffer, Simon
AU - Dumpler, Joseph
AU - Kulozik, Ulrich
N1 - Publisher Copyright:
© 2019 MDPI Multidisciplinary Digital Publishing Institute. All rights reserved.
PY - 2019/6
Y1 - 2019/6
N2 - Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM.We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.
AB - Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM.We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.
KW - Deposit layer formation
KW - Deposit layer history
KW - MF
KW - Microfiltration
KW - Mode of ΔpTM increase
KW - SWM
KW - Skim milk
KW - Temperature
UR - http://www.scopus.com/inward/record.url?scp=85069797890&partnerID=8YFLogxK
U2 - 10.3390/foods8060180
DO - 10.3390/foods8060180
M3 - Article
AN - SCOPUS:85069797890
SN - 2304-8158
VL - 8
JO - Foods
JF - Foods
IS - 6
M1 - 180
ER -