Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia

Cedric Bressan, Marta Snapyan, Marina Snapyan, Johannes Klaus, Francesco di Matteo, Stephen P. Robertson, Barbara Treutlein, Martin Parent, Silvia Cappello, Armen Saghatelyan

Research output: Contribution to journalArticlepeer-review

Abstract

Periventricular neuronal heterotopia (PH) is one of the most common forms of cortical malformation in the human cortex. We show that human neuronal progenitor cells (hNPCs) derived from PH patients with a DCHS1 or FAT4 mutation as well as isogenic lines had altered migratory dynamics when grafted in the mouse brain. The affected migration was linked to altered autophagy as observed in vivo with an electron microscopic analysis of grafted hNPCs, a Western blot analysis of cortical organoids, and time-lapse imaging of hNPCs in the presence of bafilomycin A1. We further show that deficits in autophagy resulted in the accumulation of paxillin, a focal adhesion protein involved in cell migration. Strikingly, a single-cell RNA-seq analysis of hNPCs revealed similar expression levels of autophagy-related genes. Bolstering AMPK-dependent autophagy by metformin, an FDA-approved drug, promoted migration of PH patients-derived hNPCs. Our data indicate that transcription-independent homeostatic modifications in autophagy contributed to the defective migratory behavior of hNPCs in vivo and suggest that modulating autophagy in hNPCs might rescue neuronal migration deficits in some forms of PH.

Original languageEnglish
Article numbere16908
JournalEMBO Molecular Medicine
Volume15
Issue number10
DOIs
StatePublished - 11 Oct 2023
Externally publishedYes

Keywords

  • DCHS1
  • FAT4
  • autophagy
  • human neural progenitor cells
  • periventricular neuronal heterotopia

Fingerprint

Dive into the research topics of 'Metformin rescues migratory deficits of cells derived from patients with periventricular heterotopia'. Together they form a unique fingerprint.

Cite this