MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation

Azade Farshad, Anastasia Makarevich, Vasileios Belagiannis, Nassir Navab

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

The lack of sufficient annotated image data is a common issue in medical image segmentation. For some organs and densities, the annotation may be scarce, leading to poor model training convergence, while other organs have plenty of annotated data. In this work, we present MetaMedSeg, a gradient-based meta-learning algorithm that redefines the meta-learning task for the volumetric medical data with the goal of capturing the variety between the slices. We also explore different weighting schemes for gradients aggregation, arguing that different tasks might have different complexity and hence, contribute differently to the initialization. We propose an importance-aware weighting scheme to train our model. In the experiments, we evaluate our method on the medical decathlon dataset by extracting 2D slices from CT and MRI volumes of different organs and performing semantic segmentation. The results show that our proposed volumetric task definition leads to up to 30 % improvement in terms of IoU compared to related baselines. The proposed update rule is also shown to improve the performance for complex scenarios where the data distribution of the target organ is very different from the source organs. (Project page: http://metamedseg.github.io/

Original languageEnglish
Title of host publicationDomain Adaptation and Representation Transfer - 4th MICCAI Workshop, DART 2022, Held in Conjunction with MICCAI 2022, Proceedings
EditorsKonstantinos Kamnitsas, Lisa Koch, Mobarakol Islam, Ziyue Xu, Jorge Cardoso, Qi Dou, Nicola Rieke, Sotirios Tsaftaris
PublisherSpringer Science and Business Media Deutschland GmbH
Pages45-55
Number of pages11
ISBN (Print)9783031168512
DOIs
StatePublished - 2022
Event4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 22 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13542 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period22/09/2222/09/22

Fingerprint

Dive into the research topics of 'MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation'. Together they form a unique fingerprint.

Cite this