TY - JOUR
T1 - Metabolomic investigations in cerebrospinal fluid of Parkinson’s disease
AU - Willkommen, Desiree
AU - Lucio, Marianna
AU - Moritz, Franco
AU - Forcisi, Sara
AU - Kanawati, Basem
AU - Smirnov, Kirill S.
AU - Schroeter, Michael
AU - Sigaroudi, Ali
AU - Schmitt-Kopplin, Philippe
AU - Michalke, Bernhard
N1 - Publisher Copyright:
© 2018 Willkommen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/12
Y1 - 2018/12
N2 - The underlying mechanisms of Parkinson´s disease are not completely revealed. Especially, early diagnostic biomarkers are lacking. To characterize early pathophysiological events, research is focusing on metabolomics. In this case-control study we investigated the metabolic profile of 31 Parkinson´s disease-patients in comparison to 95 neurologically healthy controls. The investigation of metabolites in CSF was performed by a 12 Tesla SolariX Fourier transform-ion cyclotron resonance-mass spectrometer (FT-ICR-MS). Multivariate statistical analysis sorted the most important biomarkers in relation to their ability to differentiate Parkinson versus control. The affected metabolites, their connection and their conversion pathways are described by means of network analysis. The metabolic profiling by FT-ICR-MS in CSF yielded in a good group separation, giving insights into the disease mechanisms. A total number of 243 metabolites showed an affected intensity in Parkinson´s disease, whereas 15 of these metabolites seem to be the main biological contributors. The network analysis showed a connection to the tricarboxylic cycle (TCA cycle) and therefore to mitochondrial dysfunction and increased oxidative stress within mitochondria. The metabolomic analysis of CSF in Parkinson´s disease showed an association to pathways which are involved in lipid/ fatty acid metabolism, energy metabolism, glutathione metabolism and mitochondrial dysfunction.
AB - The underlying mechanisms of Parkinson´s disease are not completely revealed. Especially, early diagnostic biomarkers are lacking. To characterize early pathophysiological events, research is focusing on metabolomics. In this case-control study we investigated the metabolic profile of 31 Parkinson´s disease-patients in comparison to 95 neurologically healthy controls. The investigation of metabolites in CSF was performed by a 12 Tesla SolariX Fourier transform-ion cyclotron resonance-mass spectrometer (FT-ICR-MS). Multivariate statistical analysis sorted the most important biomarkers in relation to their ability to differentiate Parkinson versus control. The affected metabolites, their connection and their conversion pathways are described by means of network analysis. The metabolic profiling by FT-ICR-MS in CSF yielded in a good group separation, giving insights into the disease mechanisms. A total number of 243 metabolites showed an affected intensity in Parkinson´s disease, whereas 15 of these metabolites seem to be the main biological contributors. The network analysis showed a connection to the tricarboxylic cycle (TCA cycle) and therefore to mitochondrial dysfunction and increased oxidative stress within mitochondria. The metabolomic analysis of CSF in Parkinson´s disease showed an association to pathways which are involved in lipid/ fatty acid metabolism, energy metabolism, glutathione metabolism and mitochondrial dysfunction.
UR - http://www.scopus.com/inward/record.url?scp=85058225427&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0208752
DO - 10.1371/journal.pone.0208752
M3 - Article
C2 - 30532185
AN - SCOPUS:85058225427
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 12
M1 - e0208752
ER -