Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches

Karina Hobmeier, Martin Oppermann, Natalie Stasinski, Andreas Kremling, Katharina Pflüger-Grau, Hans Jörg Kunte, Alberto Marin-Sanguino

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13.

Original languageEnglish
Article number968983
JournalFrontiers in Microbiology
Volume13
DOIs
StatePublished - 25 Aug 2022

Keywords

  • Halomonas elongata
  • biochemistry
  • biotechnology
  • ectoine
  • halophiles
  • metabolic engineering
  • microbiology

Fingerprint

Dive into the research topics of 'Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches'. Together they form a unique fingerprint.

Cite this