Meta-Reinforcement Learning via Language Instructions

Zhenshan Bing, Alexander Koch, Xiangtong Yao, Kai Huang, Alois Knoll

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations


Although deep reinforcement learning has recently been very successful at learning complex behaviors, it requires a tremendous amount of data to learn a task. One of the fundamental reasons causing this limitation lies in the nature of the trial-and-error learning paradigm of reinforcement learning, where the agent communicates with the environment and pro-gresses in the learning only relying on the reward signal. This is implicit and rather insufficient to learn a task well. On the con-trary, humans are usually taught new skills via natural language instructions. Utilizing language instructions for robotic motion control to improve the adaptability is a recently emerged topic and challenging. In this paper, we present a meta-RL algorithm that addresses the challenge of learning skills with language instructions in multiple manipulation tasks. On the one hand, our algorithm utilizes the language instructions to shape its in-terpretation of the task, on the other hand, it still learns to solve task in a trial-and-error process. We evaluate our algorithm on the robotic manipulation benchmark (Meta-World) and it significantly outperforms state-of-the-art methods in terms of training and testing task success rates. Codes are available at

Original languageEnglish
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages7
ISBN (Electronic)9798350323658
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: 29 May 20232 Jun 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729


Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom


Dive into the research topics of 'Meta-Reinforcement Learning via Language Instructions'. Together they form a unique fingerprint.

Cite this