MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning

Zheng Lian, Haiyang Sun, Licai Sun, Kang Chen, Mngyu Xu, Kexin Wang, Ke Xu, Yu He, Ying Li, Jinming Zhao, Ye Liu, Bin Liu, Jiangyan Yi, Meng Wang, Erik Cambria, Guoying Zhao, Björn W. Schuller, Jianhua Tao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

The first Multimodal Emotion Recognition Challenge (MER 2023)1 was successfully held at ACM Multimedia. The challenge focuses on system robustness and consists of three distinct tracks: (1) MER-MULTI, where participants are required to recognize both discrete and dimensional emotions; (2) MER-NOISE, in which noise is added to test videos for modality robustness evaluation; (3) MER-SEMI, which provides a large amount of unlabeled samples for semi-supervised learning. In this paper, we introduce the motivation behind this challenge, describe the benchmark dataset, and provide some statistics about participants. To continue using this dataset after MER 2023, please sign a new End User License Agreement2 and send it to our official email address3. We believe this high-quality dataset can become a new benchmark in multimodal emotion recognition, especially for the Chinese research community.

Original languageEnglish
Title of host publicationMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages9610-9614
Number of pages5
ISBN (Electronic)9798400701085
DOIs
StatePublished - 26 Oct 2023
Externally publishedYes
Event31st ACM International Conference on Multimedia, MM 2023 - Ottawa, Canada
Duration: 29 Oct 20233 Nov 2023

Publication series

NameMM 2023 - Proceedings of the 31st ACM International Conference on Multimedia

Conference

Conference31st ACM International Conference on Multimedia, MM 2023
Country/TerritoryCanada
CityOttawa
Period29/10/233/11/23

Keywords

  • modality robustness
  • multi-label learning
  • multimodal emotion recognition challenge (mer 2023)
  • semi-supervised learning

Fingerprint

Dive into the research topics of 'MER 2023: Multi-label Learning, Modality Robustness, and Semi-Supervised Learning'. Together they form a unique fingerprint.

Cite this