MeDIP-HMM: Genome-wide identification of distinct DNA methylation states from high-density tiling arrays

Michael Seifert, Sandra Cortijo, Maria Colomé-Tatché, Frank Johannes, François Roudier, Vincent Colot

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Motivation: Methylation of cytosines in DNA is an important epigenetic mechanism involved in transcriptional regulation and preservation of genome integrity in a wide range of eukaryotes. Immunoprecipitation of methylated DNA followed by hybridization to genomic tiling arrays (MeDIP-chip) is a cost-effective and sensitive method for methylome analyses. However, existing bioinformatics methods only enable a binary classification into unmethylated and methylated genomic regions, which limit biological interpretations. Indeed, DNA methylation levels can vary substantially within a given DNA fragment depending on the number and degree of methylated cytosines. Therefore, a method for the identification of more than two methylation states is highly desirable.Results: Here, we present a three-state hidden Markov model (MeDIP-HMM) for analyzing MeDIP-chip data. MeDIP-HMM uses a higher-order state-transition process improving modeling of spatial dependencies between chromosomal regions, allows a simultaneous analysis of replicates and enables a differentiation between unmethylated, methylated and highly methylated genomic regions. We train MeDIP-HMM using a Bayesian Baum-Welch algorithm, integrating prior knowledge on methylation levels. We apply MeDIP-HMM to the analysis of the Arabidopsis root methylome and systematically investigate the benefit of using higher-order HMMs. Moreover, we also perform an in-depth comparison study with existing methods and demonstrate the value of using MeDIP-HMM by comparisons to current knowledge on the Arabidopsis methylome. We find that MeDIP-HMM is a fast and precise method for the analysis of methylome data, enabling the identification of distinct DNA methylation levels. Finally, we provide evidence for the general applicability of MeDIP-HMM by analyzing promoter DNA methylation data obtained for chicken.

Original languageEnglish
Pages (from-to)2930-2939
Number of pages10
JournalBioinformatics
Volume28
Issue number22
DOIs
StatePublished - Nov 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'MeDIP-HMM: Genome-wide identification of distinct DNA methylation states from high-density tiling arrays'. Together they form a unique fingerprint.

Cite this