TY - JOUR
T1 - Mechanistic studies on initiation and propagation of rare earth metal-mediated group transfer polymerization of vinylphosphonates
AU - Salzinger, Stephan
AU - Soller, Benedikt S.
AU - Plikhta, Andriy
AU - Seemann, Uwe B.
AU - Herdtweck, Eberhardt
AU - Rieger, Bernhard
PY - 2013/9/4
Y1 - 2013/9/4
N2 - Initiation of rare earth metal-mediated vinylphosphonate polymerization with unbridged rare earth metallocenes (Cp2LnX) follows a complex reaction pathway. Depending on the nature of X, initiation can proceed either via abstraction of the acidic α-CH of the vinylphosphonate (e.g., for X = Me, CH2TMS), via nucleophilic transfer of X to a coordinated monomer (e.g., for X = Cp, SR) or via a monomer (i.e., donor)-induced ligand-exchange reaction forming Cp3Ln in equilibrium (e.g., for X = Cl, OR), which serves as the active initiating species. As determined by mass spectrometric end group analysis, different initiations may also occur simultaneously (e.g., for X = N(SiMe2H)2). A general differential approach for the kinetic analysis of living polymerizations with fast propagation and comparatively slow initiation is presented. Time-resolved analysis of monomer conversion and molecular weights of the formed polymers allow the determination of the initiator efficiency throughout the whole reaction. Using this normalization method, rare earth metal-mediated vinylphosphonate GTP is shown to follow a Yasuda-type monometallic propagation mechanism, with an S N2-type associative displacement of the polymer phosphonate ester by a monomer as the rate-determining step. The propagation rate of vinylphosphonate GTP is mainly determined by the activation entropy, i.e. the change of rotational and vibrational restrictions within the eight-membered metallacycle in the rate-determining step as a function of the steric demand of the metallacycle side chains and the steric crowding at the metal center.
AB - Initiation of rare earth metal-mediated vinylphosphonate polymerization with unbridged rare earth metallocenes (Cp2LnX) follows a complex reaction pathway. Depending on the nature of X, initiation can proceed either via abstraction of the acidic α-CH of the vinylphosphonate (e.g., for X = Me, CH2TMS), via nucleophilic transfer of X to a coordinated monomer (e.g., for X = Cp, SR) or via a monomer (i.e., donor)-induced ligand-exchange reaction forming Cp3Ln in equilibrium (e.g., for X = Cl, OR), which serves as the active initiating species. As determined by mass spectrometric end group analysis, different initiations may also occur simultaneously (e.g., for X = N(SiMe2H)2). A general differential approach for the kinetic analysis of living polymerizations with fast propagation and comparatively slow initiation is presented. Time-resolved analysis of monomer conversion and molecular weights of the formed polymers allow the determination of the initiator efficiency throughout the whole reaction. Using this normalization method, rare earth metal-mediated vinylphosphonate GTP is shown to follow a Yasuda-type monometallic propagation mechanism, with an S N2-type associative displacement of the polymer phosphonate ester by a monomer as the rate-determining step. The propagation rate of vinylphosphonate GTP is mainly determined by the activation entropy, i.e. the change of rotational and vibrational restrictions within the eight-membered metallacycle in the rate-determining step as a function of the steric demand of the metallacycle side chains and the steric crowding at the metal center.
UR - http://www.scopus.com/inward/record.url?scp=84883714637&partnerID=8YFLogxK
U2 - 10.1021/ja404457f
DO - 10.1021/ja404457f
M3 - Article
C2 - 23889319
AN - SCOPUS:84883714637
SN - 0002-7863
VL - 135
SP - 13030
EP - 13040
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 35
ER -