Measuring large lipid droplet sizes by probing restricted lipid diffusion effects with diffusion-weighted MRS at 3T

Dominik Weidlich, Julius Honecker, Oliver Gmach, Mingming Wu, Rainer Burgkart, Stefan Ruschke, Daniela Franz, Bjoern H. Menze, Thomas Skurk, Hans Hauner, Ulrich Kulozik, Dimitrios C. Karampinos

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Purpose: The in vivo probing of restricted diffusion effects in large lipid droplets on a clinical MR scanner remains a major challenge due to the need for high b-values and long diffusion times. This work proposes a methodology to probe mean lipid droplet sizes using diffusion-weighted MRS (DW-MRS) at 3T. Methods: An analytical expression for restricted diffusion was used. Simulations were performed to evaluate the noise performance and the influence of particle size distribution. To validate the method, oil-in-water emulsions were prepared and examined using DW-MRS, laser deflection and light microscopy. The tibia bone marrow was scanned in volunteers to test the method repeatability and characterize microstructural differences at different locations. Results: The simulations showed accurate and precise droplet size estimation when a sufficient SNR is reached with minor dependence on the size distribution. In phantoms, a good correlation between the measured droplet sizes by DW-MRS and by laser deflection (R2 = 0.98; P = 0.01) and microscopy (R2 = 0.99; P < 0.01) measurements was obtained. A mean coefficient of variation of 11.5 % was found for the lipid droplet diameter in vivo. The average diameter was smaller at a proximal (50.1 ± 7.3 µm) compared with a distal tibia location (61.1 ± 6.8 µm) (P < 0.01). Conclusion: The presented methods were able to probe restricted diffusion effects in lipid droplets using DW-MRS and to estimate lipid droplet size. The methodology was validated using phantoms and the in vivo feasibility in bone marrow was shown based on a good repeatability and findings in agreement with literature.

Original languageEnglish
Pages (from-to)3427-3439
Number of pages13
JournalMagnetic Resonance in Medicine
Issue number6
StatePublished - Jun 2019


  • DW-MRS
  • adipocytes diameter
  • adipose tissue microstructure
  • diffusion of fat
  • lipid droplet


Dive into the research topics of 'Measuring large lipid droplet sizes by probing restricted lipid diffusion effects with diffusion-weighted MRS at 3T'. Together they form a unique fingerprint.

Cite this