TY - GEN
T1 - Measuring Generalization with Optimal Transport
AU - Chuang, Ching Yao
AU - Mroueh, Youssef
AU - Greenewald, Kristjan
AU - Torralba, Antonio
AU - Jegelka, Stefanie
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Understanding the generalization of deep neural networks is one of the most important tasks in deep learning. Although much progress has been made, theoretical error bounds still often behave disparately from empirical observations. In this work, we develop margin-based generalization bounds, where the margins are normalized with optimal transport costs between independent random subsets sampled from the training distribution. In particular, the optimal transport cost can be interpreted as a generalization of variance which captures the structural properties of the learned feature space. Our bounds robustly predict the generalization error, given training data and network parameters, on large scale datasets. Theoretically, we demonstrate that the concentration and separation of features play crucial roles in generalization, supporting empirical results in the literature. The code is available at https://github.com/chingyaoc/kV-Margin.
AB - Understanding the generalization of deep neural networks is one of the most important tasks in deep learning. Although much progress has been made, theoretical error bounds still often behave disparately from empirical observations. In this work, we develop margin-based generalization bounds, where the margins are normalized with optimal transport costs between independent random subsets sampled from the training distribution. In particular, the optimal transport cost can be interpreted as a generalization of variance which captures the structural properties of the learned feature space. Our bounds robustly predict the generalization error, given training data and network parameters, on large scale datasets. Theoretically, we demonstrate that the concentration and separation of features play crucial roles in generalization, supporting empirical results in the literature. The code is available at https://github.com/chingyaoc/kV-Margin.
UR - http://www.scopus.com/inward/record.url?scp=85123341529&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85123341529
T3 - Advances in Neural Information Processing Systems
SP - 8294
EP - 8306
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -